Morita equivalence of pseudogroups

被引:0
|
作者
Lawson, M., V [1 ,2 ]
Resende, P. [3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Lisbon, Inst Super Tecn, Dept Matemat, Ctr Math Anal Geometry & Dynam Syst, Av Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Inverse semigroups; Pseudogroups; Morita equivalence; Quant ales; Inverse quantal frames; Etale groupoids; ETALE GROUPOIDS; SHEAVES; QUANTALES;
D O I
10.1016/j.jalgebra.2021.06.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We take advantage of the correspondence between pseudogroups and inverse quantal frames, and of the recent description of Morita equivalence for inverse quantal frames in terms of biprincipal bisheaves, to define Morita equivalence for pseudogroups and to investigate its applications. In particular, two pseudogroups are Morita equivalent if and only if their corresponding localic etale groupoids are. We explore the clear analogies between our definition of Morita equivalence for pseudogroups and the usual notion of strong Morita equivalence for C*-algebras and these lead to a number of concrete results. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:718 / 755
页数:38
相关论文
共 50 条
  • [31] Noncommutative fermions and Morita equivalence
    Correa, DH
    Moreno, EF
    PHYSICS LETTERS B, 2002, 534 (1-4) : 185 - 194
  • [32] Modular Curvature and Morita Equivalence
    Matthias Lesch
    Henri Moscovici
    Geometric and Functional Analysis, 2016, 26 : 818 - 873
  • [33] Morita equivalence of inverse semigroups
    Afara, B.
    Lawson, M. V.
    PERIODICA MATHEMATICA HUNGARICA, 2013, 66 (01) : 119 - 130
  • [34] Morita equivalence and Pedersen ideals
    Ara, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (04) : 1041 - 1049
  • [35] Fair semigroups and Morita equivalence
    Laan, Valdis
    Marki, Laszlo
    SEMIGROUP FORUM, 2016, 92 (03) : 633 - 644
  • [36] Morita equivalence for graded rings
    Abrams, Gene
    Ruiz, Efren
    Tomforde, Mark
    JOURNAL OF ALGEBRA, 2023, 617 : 79 - 112
  • [37] Morita Equivalence for Factorisable Semigroups
    Yu Qun CHEN Department of Mathematics
    Acta Mathematica Sinica(English Series), 2001, 17 (03) : 437 - 454
  • [38] Morita equivalence of finite semigroups
    Reimaa, Ulo
    Laan, Valdis
    Tart, Lauri
    SEMIGROUP FORUM, 2021, 102 (03) : 842 - 860
  • [39] CATEGORIES OF ACTIONS AND MORITA EQUIVALENCE
    ELKINS, BL
    ZILBER, JA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A357 - A357
  • [40] Morita equivalence and quotient rings
    Harris, Morton E.
    JOURNAL OF ALGEBRA, 2018, 502 : 45 - 48