Morita equivalence of pseudogroups

被引:0
|
作者
Lawson, M., V [1 ,2 ]
Resende, P. [3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Lisbon, Inst Super Tecn, Dept Matemat, Ctr Math Anal Geometry & Dynam Syst, Av Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Inverse semigroups; Pseudogroups; Morita equivalence; Quant ales; Inverse quantal frames; Etale groupoids; ETALE GROUPOIDS; SHEAVES; QUANTALES;
D O I
10.1016/j.jalgebra.2021.06.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We take advantage of the correspondence between pseudogroups and inverse quantal frames, and of the recent description of Morita equivalence for inverse quantal frames in terms of biprincipal bisheaves, to define Morita equivalence for pseudogroups and to investigate its applications. In particular, two pseudogroups are Morita equivalent if and only if their corresponding localic etale groupoids are. We explore the clear analogies between our definition of Morita equivalence for pseudogroups and the usual notion of strong Morita equivalence for C*-algebras and these lead to a number of concrete results. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:718 / 755
页数:38
相关论文
共 50 条
  • [41] Morita Equivalence for Rings with Involution
    Ara P.
    Algebras and Representation Theory, 1999, 2 (3) : 227 - 247
  • [42] Morita equivalence of Cherednik algebras
    Berest, Y
    Etingof, P
    Ginzburg, V
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2004, 568 : 81 - 98
  • [43] Modular Curvature and Morita Equivalence
    Lesch, Matthias
    Moscovici, Henri
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) : 818 - 873
  • [44] Poisson geometry and Morita equivalence
    Bursztyn, Henrique
    Weinstein, Alan
    POISSON GEOMETRY, DEFORMATION QUANTISATION AND GROUP REPRESENTATIONS, 2005, 323 : 1 - +
  • [45] MORITA EQUIVALENCE OF NEST ALGEBRAS
    Eleftherakis, G. K.
    MATHEMATICA SCANDINAVICA, 2013, 113 (01) : 83 - 107
  • [46] MORITA EQUIVALENCE AND CYCLIC HOMOLOGY
    MCCARTHY, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (06): : 211 - 215
  • [47] Morita equivalence of finite semigroups
    Ülo Reimaa
    Valdis Laan
    Lauri Tart
    Semigroup Forum, 2021, 102 : 842 - 860
  • [48] Morita equivalence for factorisable semigroups
    Chen, YQ
    Shum, KP
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2001, 17 (03): : 437 - 454
  • [49] On invariants and equivalence of differential operators under Lie pseudogroups actions
    Lychagin, Valentin
    Yumaguzhin, Valeriy
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 189
  • [50] Hausdorff Morita equivalence of singular foliations
    Alfonso Garmendia
    Marco Zambon
    Annals of Global Analysis and Geometry, 2019, 55 : 99 - 132