Variational symmetry in non-integrable hamiltonian systems

被引:0
|
作者
Ken U. [1 ]
机构
[1] Laboratory of Information Representation Frontier Research Program, The Institute of Physical and Chemical Research (RIKEN) 2–1, Hirosawa, Wako, Saitama
关键词
D O I
10.2991/jnmp.1997.4.1-2.8
中图分类号
学科分类号
摘要
We consider the variational symmetry from the viewpoint of the non-integrability criterion towards dynamical systems. That variational symmetry can reduce complexity in determining non-integrability of general dynamical systems is illustrated here by a new non-integrability result about Hamiltonian systems with many degrees of freedom. © 1997 Taylor & Francis Group, LLC.
引用
收藏
页码:69 / 77
页数:8
相关论文
共 50 条
  • [21] Optimal Bounded Control for Minimizing the Response of Quasi Non-Integrable Hamiltonian Systems
    W. Q. Zhu
    M. L. Deng
    [J]. Nonlinear Dynamics, 2004, 35 : 81 - 100
  • [22] Summability of Transseries Solution of Non-integrable Hamiltonian System
    Yoshino, Masafumi
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2024, 30 (02) : 1 - 27
  • [23] Integrable and non-integrable Lotka-Volterra systems
    Bountis, Tassos
    Zhunussova, Zhanat
    Dosmagulova, Karlygash
    Kanellopoulos, George
    [J]. PHYSICS LETTERS A, 2021, 402
  • [24] On optical Airy beams in integrable and non-integrable systems
    Assanto, Gaetano
    Minzoni, Antonmaria A.
    Smyth, Noel F.
    [J]. WAVE MOTION, 2015, 52 : 183 - 193
  • [25] Exact results for non-integrable systems
    Gulacsi, Zsolt
    [J]. IC-MSQUARE 2012: INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELLING IN PHYSICAL SCIENCES, 2013, 410
  • [26] Classical limit of non-integrable systems
    Castagnino, M
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2005, 35 (2B) : 375 - 379
  • [27] ANALYTIC STRUCTURE OF THE HENON-HEILES HAMILTONIAN IN INTEGRABLE AND NON-INTEGRABLE REGIMES
    CHANG, YF
    TABOR, M
    WEISS, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (04) : 531 - 538
  • [28] REAPPEARANCE OF ORDERED MOTION IN NON-INTEGRABLE HAMILTONIAN-SYSTEMS - THE STRONG COUPLING CASE
    ALI, MK
    SOMORJAI, RL
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1982, 68 (06): : 1854 - 1863
  • [29] Observer design for non-integrable systems
    Lynch, AF
    Bortoff, SA
    [J]. PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 176 - 180
  • [30] KOLMOGOROV-ENTROPY AS A MEASURE OF DISORDER IN SOME NON-INTEGRABLE HAMILTONIAN-SYSTEMS
    GONCZI, R
    FROESCHLE, C
    FROESCHLE, C
    [J]. CELESTIAL MECHANICS, 1984, 34 (1-4): : 117 - 124