On optical Airy beams in integrable and non-integrable systems

被引:8
|
作者
Assanto, Gaetano [1 ]
Minzoni, Antonmaria A. [2 ]
Smyth, Noel F. [3 ]
机构
[1] Univ Rome Roma Tre, NooEL Nonlinear Opt & OptoElect Lab, I-00146 Rome, Italy
[2] Univ Nacl Autonoma Mexico, Fenomenos Nonlineales & Mecan FENOMEC, Dept Math & Mech, Inst Invest Matemat Aplicadas & Sistemas, Mexico City 01000, DF, Mexico
[3] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
Airy beam; Nematicon; Solitary wave; Backlund transform; Uniaxial media; KERR MEDIA; GENERATION; NEMATICONS; EQUATIONS; EVOLUTION; WAVES;
D O I
10.1016/j.wavemoti.2014.10.003
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The interaction of an accelerating Airy beam and a solitary wave is investigated for integrable and non-integrable equations governing nonlinear optical propagation in various media. For the integrable nonlinear Schrodinger equation, by way of a Backlund transformation, we show that no momentum exchange takes place, as the only effect of the interaction is to modulate the amplitude of the solitary wave. The latter result also holds for propagation in anisotropic media with birefringent walkoff and nonlocality, as specifically addressed with reference to uniaxial nematic liquid crystals in the absence of beam curvature. When the wavefront curvature characteristic of accelerating Airy beams is accounted for, both asymptotic and numerical solutions show that a small amount of momentum is initially exchanged, with the solitary wave rapidly settling to a state of constant momentum. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:183 / 193
页数:11
相关论文
共 50 条
  • [1] Integrable variational equations of non-integrable systems
    Maciejewski, Andrzej J.
    Przybylska, Maria
    [J]. REGULAR & CHAOTIC DYNAMICS, 2012, 17 (3-4): : 337 - 358
  • [2] Integrable variational equations of non-integrable systems
    Andrzej J. Maciejewski
    Maria Przybylska
    [J]. Regular and Chaotic Dynamics, 2012, 17 : 337 - 358
  • [3] Integrable and non-integrable Lotka-Volterra systems
    Bountis, Tassos
    Zhunussova, Zhanat
    Dosmagulova, Karlygash
    Kanellopoulos, George
    [J]. PHYSICS LETTERS A, 2021, 402
  • [4] THE PAINLEVE PROPERTY AND SINGULARITY ANALYSIS OF INTEGRABLE AND NON-INTEGRABLE SYSTEMS
    RAMANI, A
    GRAMMATICOS, B
    BOUNTIS, T
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1989, 180 (03): : 159 - 245
  • [5] Examples of integrable and non-integrable systems on singular symplectic manifolds
    Delshams, Amadeu
    Kiesenhofer, Anna
    Miranda, Eva
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2017, 115 : 89 - 97
  • [6] Spreading in integrable and non-integrable many-body systems
    Freese, Johannes
    Gutkin, Boris
    Guhr, Thomas
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 461 : 683 - 693
  • [7] Classical limit of non-integrable systems
    Castagnino, M
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2005, 35 (2B) : 375 - 379
  • [8] Exact results for non-integrable systems
    Gulacsi, Zsolt
    [J]. IC-MSQUARE 2012: INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELLING IN PHYSICAL SCIENCES, 2013, 410
  • [9] Observer design for non-integrable systems
    Lynch, AF
    Bortoff, SA
    [J]. PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 176 - 180
  • [10] DYNAMICS OF CLASSICAL SOLITONS (IN NON-INTEGRABLE SYSTEMS)
    MAKHANKOV, VG
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1978, 35 (01): : 1 - 128