On optical Airy beams in integrable and non-integrable systems

被引:8
|
作者
Assanto, Gaetano [1 ]
Minzoni, Antonmaria A. [2 ]
Smyth, Noel F. [3 ]
机构
[1] Univ Rome Roma Tre, NooEL Nonlinear Opt & OptoElect Lab, I-00146 Rome, Italy
[2] Univ Nacl Autonoma Mexico, Fenomenos Nonlineales & Mecan FENOMEC, Dept Math & Mech, Inst Invest Matemat Aplicadas & Sistemas, Mexico City 01000, DF, Mexico
[3] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
Airy beam; Nematicon; Solitary wave; Backlund transform; Uniaxial media; KERR MEDIA; GENERATION; NEMATICONS; EQUATIONS; EVOLUTION; WAVES;
D O I
10.1016/j.wavemoti.2014.10.003
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The interaction of an accelerating Airy beam and a solitary wave is investigated for integrable and non-integrable equations governing nonlinear optical propagation in various media. For the integrable nonlinear Schrodinger equation, by way of a Backlund transformation, we show that no momentum exchange takes place, as the only effect of the interaction is to modulate the amplitude of the solitary wave. The latter result also holds for propagation in anisotropic media with birefringent walkoff and nonlocality, as specifically addressed with reference to uniaxial nematic liquid crystals in the absence of beam curvature. When the wavefront curvature characteristic of accelerating Airy beams is accounted for, both asymptotic and numerical solutions show that a small amount of momentum is initially exchanged, with the solitary wave rapidly settling to a state of constant momentum. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:183 / 193
页数:11
相关论文
共 50 条
  • [21] Quantitative Behavior Of Non-Integrable Systems. IV
    Beck, J.
    Chen, W. W. L.
    Yang, Y.
    [J]. ACTA MATHEMATICA HUNGARICA, 2022, 167 (01) : 1 - 160
  • [22] Analytic non-integrable Hamiltonian systems and irregular singularity
    Masafumi Yoshino
    [J]. Annali di Matematica Pura ed Applicata, 2008, 187 : 555 - 562
  • [23] QUANTUM-MECHANICS OF CLASSICALLY NON-INTEGRABLE SYSTEMS
    ECKHARDT, B
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 163 (04): : 205 - 297
  • [24] Quantitative Behavior Of Non-Integrable Systems. IV
    J. Beck
    W. W. L. Chen
    Y. Yang
    [J]. Acta Mathematica Hungarica, 2022, 167 : 1 - 160
  • [25] Discrete variable method for non-integrable quantum systems
    Schweizer, W
    Fassbinder, P
    González-Férez, R
    [J]. QUANTUM SYSTEMS IN CHEMISTRY AND PHYSICS, VOL 2: ADVANCED PROBLEMS AND COMPLEX SYSTEMS, 2000, 3 : 301 - 321
  • [26] Soliton-like behaviour in non-integrable systems
    Nimiwal, Raghavendra
    Satpathi, Urbashi
    Vasan, Vishal
    Kulkarni, Manas
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (42)
  • [27] Quantitative behavior of non-integrable systems. III
    J. Beck
    W. W. L. Chen
    Y. Yang
    [J]. Acta Mathematica Hungarica, 2022, 166 : 254 - 372
  • [28] Quantitative behavior of non-integrable systems. I
    J. Beck
    M. Donders
    Y. Yang
    [J]. Acta Mathematica Hungarica, 2020, 161 : 66 - 184
  • [29] Analytic non-integrable Hamiltonian systems and irregular singularity
    Yoshino, Masafumi
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (04) : 555 - 562
  • [30] Solvmanifolds with integrable and non-integrable G2 structures
    Agricola, Ilka
    Chiossi, Simon G.
    Fino, Anna
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2007, 25 (02) : 125 - 135