Observer design for non-integrable systems

被引:0
|
作者
Lynch, AF
Bortoff, SA
机构
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Systems for which no observer with linear error dynamics exists are termed non-integrable. Generically, nonlinear systems are non-integrable. Using results developed for approximate feedback linearization, we propose two approaches to observer design for nonintegrable, unforced, single-output systems. An example illustrates the design procedure.
引用
收藏
页码:176 / 180
页数:5
相关论文
共 50 条
  • [1] Integrable variational equations of non-integrable systems
    Maciejewski, Andrzej J.
    Przybylska, Maria
    [J]. REGULAR & CHAOTIC DYNAMICS, 2012, 17 (3-4): : 337 - 358
  • [2] Integrable variational equations of non-integrable systems
    Andrzej J. Maciejewski
    Maria Przybylska
    [J]. Regular and Chaotic Dynamics, 2012, 17 : 337 - 358
  • [3] Integrable and non-integrable Lotka-Volterra systems
    Bountis, Tassos
    Zhunussova, Zhanat
    Dosmagulova, Karlygash
    Kanellopoulos, George
    [J]. PHYSICS LETTERS A, 2021, 402
  • [4] On optical Airy beams in integrable and non-integrable systems
    Assanto, Gaetano
    Minzoni, Antonmaria A.
    Smyth, Noel F.
    [J]. WAVE MOTION, 2015, 52 : 183 - 193
  • [5] Exact results for non-integrable systems
    Gulacsi, Zsolt
    [J]. IC-MSQUARE 2012: INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELLING IN PHYSICAL SCIENCES, 2013, 410
  • [6] Classical limit of non-integrable systems
    Castagnino, M
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2005, 35 (2B) : 375 - 379
  • [7] THE PAINLEVE PROPERTY AND SINGULARITY ANALYSIS OF INTEGRABLE AND NON-INTEGRABLE SYSTEMS
    RAMANI, A
    GRAMMATICOS, B
    BOUNTIS, T
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1989, 180 (03): : 159 - 245
  • [8] Examples of integrable and non-integrable systems on singular symplectic manifolds
    Delshams, Amadeu
    Kiesenhofer, Anna
    Miranda, Eva
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2017, 115 : 89 - 97
  • [9] Spreading in integrable and non-integrable many-body systems
    Freese, Johannes
    Gutkin, Boris
    Guhr, Thomas
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 461 : 683 - 693
  • [10] DYNAMICS OF CLASSICAL SOLITONS (IN NON-INTEGRABLE SYSTEMS)
    MAKHANKOV, VG
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1978, 35 (01): : 1 - 128