Variational symmetry in non-integrable hamiltonian systems

被引:0
|
作者
Ken U. [1 ]
机构
[1] Laboratory of Information Representation Frontier Research Program, The Institute of Physical and Chemical Research (RIKEN) 2–1, Hirosawa, Wako, Saitama
关键词
D O I
10.2991/jnmp.1997.4.1-2.8
中图分类号
学科分类号
摘要
We consider the variational symmetry from the viewpoint of the non-integrability criterion towards dynamical systems. That variational symmetry can reduce complexity in determining non-integrability of general dynamical systems is illustrated here by a new non-integrability result about Hamiltonian systems with many degrees of freedom. © 1997 Taylor & Francis Group, LLC.
引用
收藏
页码:69 / 77
页数:8
相关论文
共 50 条
  • [31] Finite-time Lyapunov spectrum for chaotic orbits of non-integrable Hamiltonian systems
    Szezech, JD
    Lopes, SR
    Viana, RL
    [J]. PHYSICS LETTERS A, 2005, 335 (5-6) : 394 - 401
  • [32] Stochastic optimal control of quasi non-integrable Hamiltonian systems with stochastic maximum principle
    X. D. Gu
    W. Q. Zhu
    W. Xu
    [J]. Nonlinear Dynamics, 2012, 70 : 779 - 787
  • [33] Control of quasi non-integrable Hamiltonian systems for targeting a specified stationary probability density
    Zhu, C. X.
    Zhu, W. Q.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2019, 92 (05) : 1117 - 1122
  • [34] Renormalization group reduction of non-integrable Hamiltonian systems - art. no. 6
    Tzenov, SI
    [J]. NEW JOURNAL OF PHYSICS, 2002, 4 : 6.1 - 6.12
  • [35] Stochastic optimal control of quasi non-integrable Hamiltonian systems with stochastic maximum principle
    Gu, X. D.
    Zhu, W. Q.
    Xu, W.
    [J]. NONLINEAR DYNAMICS, 2012, 70 (01) : 779 - 787
  • [36] Topological Geometry and Control for Distributed Port-Hamiltonian Systems with Non-Integrable Structures
    Nishida, Gou
    Maschke, Bernhard
    Yamakita, Masaki
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 1291 - 1297
  • [37] Feedback minimization of first-passage failure of quasi non-integrable Hamiltonian systems
    Zhu, WQ
    Huang, ZL
    Deng, ML
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2002, 37 (06) : 1057 - 1071
  • [38] THE PAINLEVE PROPERTY AND SINGULARITY ANALYSIS OF INTEGRABLE AND NON-INTEGRABLE SYSTEMS
    RAMANI, A
    GRAMMATICOS, B
    BOUNTIS, T
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1989, 180 (03): : 159 - 245
  • [39] Examples of integrable and non-integrable systems on singular symplectic manifolds
    Delshams, Amadeu
    Kiesenhofer, Anna
    Miranda, Eva
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2017, 115 : 89 - 97
  • [40] Spreading in integrable and non-integrable many-body systems
    Freese, Johannes
    Gutkin, Boris
    Guhr, Thomas
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 461 : 683 - 693