Topological Geometry and Control for Distributed Port-Hamiltonian Systems with Non-Integrable Structures

被引:3
|
作者
Nishida, Gou [1 ]
Maschke, Bernhard [2 ]
Yamakita, Masaki [3 ]
机构
[1] RIKEN, Inst Phys & Chem Res, Biomimet Control Res Grp, Environm Adapt Robot Syst Lab,Moriyama Ku, 2271-130 Anagahora, Nagoya, Aichi 4630003, Japan
[2] Univ Lyon 1, CNRS, UMR 5007, Lab Automat & Gen Procedes, F-69622 Villeurbanne, France
[3] Tokyo Inst Technol, Dept Mech & Control Engn, Tokyo 1528552, Japan
关键词
D O I
10.1109/CDC.2008.4738896
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses topological geometrical aspects and a control strategy for a distributed port-Hamiltonian system with a non-integrable structure called a distributed energy structure. First, we show a geometrical structure of port variables determined by differential forms. Next, we state the necessary condition for regarding the distributed energy structure as a boundary energy structure which is boundary integrable. From these results, we define the fundamental form that generates the distributed port-Hamiltonian system with distributed energy structures in a variational problem. Finally, we present a new concept of boundary controls for the distributed port-Hamiltonian system with distributed energy structures in space-time coordinates.
引用
收藏
页码:1291 / 1297
页数:7
相关论文
共 50 条
  • [1] Distributed Control for Infinite Dimensional Port-Hamiltonian Systems
    Macchelli, Alessandro
    [J]. IFAC PAPERSONLINE, 2021, 54 (19): : 52 - 57
  • [3] Optimal bounded control of quasi non-integrable Hamiltonian systems
    Zhu, WQ
    Deng, ML
    [J]. ADVANCES IN STOCHASTIC STRUCTURAL DYNAMICS, 2003, : 585 - 592
  • [4] On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems
    Macchelli, Alessandro
    Le Gorrec, Yann
    Ramirez, Hector
    Zwart, Hans
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (04) : 1700 - 1713
  • [5] Variational symmetry in non-integrable hamiltonian systems
    Ken U.
    [J]. Journal of Nonlinear Mathematical Physics, 1997, 4 (1-2) : 69 - 77
  • [6] Passive observers for distributed port-Hamiltonian systems
    Toledo, Jesus
    Ramirez, Hector
    Wu, Yongxin
    Le Gorrec, Yann
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 7587 - 7592
  • [7] STOCHASTIC OPTIMAL CONTROL FOR THE RESPONSE OF QUASI NON-INTEGRABLE HAMILTONIAN SYSTEMS
    Deng Maolin (Department of Biomedical Engineering
    [J]. Acta Mechanica Solida Sinica, 2003, (04) : 313 - 320
  • [8] Stochastic optimal control for the response of quasi non-integrable Hamiltonian systems
    Deng, ML
    Hong, MC
    Zhu, WQ
    [J]. ACTA MECHANICA SOLIDA SINICA, 2003, 16 (04) : 313 - 320
  • [9] Observer-based boundary control of distributed port-Hamiltonian systems
    Toledo, Jesus
    Wu, Yongxin
    Ramirez, Hector
    Le Gorrec, Yann
    [J]. AUTOMATICA, 2020, 120 (120)
  • [10] Control by Interconnection of Distributed Port-Hamiltonian Systems Beyond the Dissipation Obstacle
    Macchelli, Alessandro
    Borja, Luis Pablo
    Ortega, Romeo
    [J]. IFAC PAPERSONLINE, 2015, 48 (13): : 99 - 104