Variational symmetry in non-integrable hamiltonian systems

被引:0
|
作者
Ken U. [1 ]
机构
[1] Laboratory of Information Representation Frontier Research Program, The Institute of Physical and Chemical Research (RIKEN) 2–1, Hirosawa, Wako, Saitama
关键词
D O I
10.2991/jnmp.1997.4.1-2.8
中图分类号
学科分类号
摘要
We consider the variational symmetry from the viewpoint of the non-integrability criterion towards dynamical systems. That variational symmetry can reduce complexity in determining non-integrability of general dynamical systems is illustrated here by a new non-integrability result about Hamiltonian systems with many degrees of freedom. © 1997 Taylor & Francis Group, LLC.
引用
收藏
页码:69 / 77
页数:8
相关论文
共 50 条
  • [1] Integrable variational equations of non-integrable systems
    Maciejewski, Andrzej J.
    Przybylska, Maria
    [J]. REGULAR & CHAOTIC DYNAMICS, 2012, 17 (3-4): : 337 - 358
  • [2] Integrable variational equations of non-integrable systems
    Andrzej J. Maciejewski
    Maria Przybylska
    [J]. Regular and Chaotic Dynamics, 2012, 17 : 337 - 358
  • [3] Analytic non-integrable Hamiltonian systems and irregular singularity
    Masafumi Yoshino
    [J]. Annali di Matematica Pura ed Applicata, 2008, 187 : 555 - 562
  • [4] Stochastic stabilization of quasi non-integrable Hamiltonian systems
    Zhu, WQ
    Huang, ZL
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2004, 39 (06) : 879 - 895
  • [5] THE SQUEEZE EFFECT IN NON-INTEGRABLE HAMILTONIAN-SYSTEMS
    VANDERWEELE, JP
    CAPEL, HW
    VALKERING, TP
    POST, T
    [J]. PHYSICA A, 1988, 147 (03): : 499 - 532
  • [6] Analytic non-integrable Hamiltonian systems and irregular singularity
    Yoshino, Masafumi
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (04) : 555 - 562
  • [7] Optimal bounded control of quasi non-integrable Hamiltonian systems
    Zhu, WQ
    Deng, ML
    [J]. ADVANCES IN STOCHASTIC STRUCTURAL DYNAMICS, 2003, : 585 - 592
  • [9] STRONG COUPLING EXPANSIONS FOR NON-INTEGRABLE HAMILTONIAN-SYSTEMS
    ABARBANEL, HDI
    CRAWFORD, JD
    [J]. PHYSICA D, 1982, 5 (2-3): : 307 - 321
  • [10] A variational principle for a non-integrable model
    Georg Menz
    Martin Tassy
    [J]. Probability Theory and Related Fields, 2020, 177 : 747 - 822