Tight bounds on the maximal perimeter of convex equilateral small polygons

被引:0
|
作者
Christian Bingane
Charles Audet
机构
[1] Polytechnique Montreal,Department of Mathematics and Industrial Engineering
来源
Archiv der Mathematik | 2022年 / 119卷
关键词
Planar geometry; Equilateral polygons; Isodiametric problem; Maximal perimeter; 52A40; 52A10; 52B55;
D O I
暂无
中图分类号
学科分类号
摘要
A small polygon is a polygon that has diameter one. The maximal perimeter of a convex equilateral small polygon with n=2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2^s$$\end{document} sides is not known when s≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \ge 4$$\end{document}. In this work, we construct a family of convex equilateral small n-gons, for n=2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2^s$$\end{document} and s≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \ge 4$$\end{document}, and show that their perimeters are within O(1/n4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/n^4)$$\end{document} of the maximal perimeter and exceed the previously best known values from the literature. In particular, for the first open case n=16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=16$$\end{document}, our result proves that Mossinghoff’s equilateral hexadecagon is suboptimal.
引用
收藏
页码:325 / 336
页数:11
相关论文
共 50 条