Tight bounds on the maximal perimeter of convex equilateral small polygons

被引:0
|
作者
Christian Bingane
Charles Audet
机构
[1] Polytechnique Montreal,Department of Mathematics and Industrial Engineering
来源
Archiv der Mathematik | 2022年 / 119卷
关键词
Planar geometry; Equilateral polygons; Isodiametric problem; Maximal perimeter; 52A40; 52A10; 52B55;
D O I
暂无
中图分类号
学科分类号
摘要
A small polygon is a polygon that has diameter one. The maximal perimeter of a convex equilateral small polygon with n=2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2^s$$\end{document} sides is not known when s≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \ge 4$$\end{document}. In this work, we construct a family of convex equilateral small n-gons, for n=2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2^s$$\end{document} and s≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \ge 4$$\end{document}, and show that their perimeters are within O(1/n4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/n^4)$$\end{document} of the maximal perimeter and exceed the previously best known values from the literature. In particular, for the first open case n=16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=16$$\end{document}, our result proves that Mossinghoff’s equilateral hexadecagon is suboptimal.
引用
收藏
页码:325 / 336
页数:11
相关论文
共 50 条
  • [31] Ranking small regular polygons by area and by perimeter
    Audet, Charles
    Hansen, Pierre
    Messine, Frederic
    Journal of Applied and Industrial Mathematics, 2009, 3 (01) : 21 - 27
  • [32] Small distances in convex polygons
    Moric, Filip
    DISCRETE MATHEMATICS, 2013, 313 (18) : 1767 - 1782
  • [33] Tight bounds on maximal and maximum matchings
    Biedl, T
    Demaine, ED
    Duncan, CA
    Fleischer, R
    Kobourov, SG
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2001, 2223 : 308 - 319
  • [34] Tight bounds on maximal and maximum matchings
    Biedl, T
    Dernaine, ED
    Duncan, CA
    Fleischer, R
    Kobourov, SG
    DISCRETE MATHEMATICS, 2004, 285 (1-3) : 7 - 15
  • [35] Convex lattice polygons of fixed area with perimeter-dependent weights
    Rajesh, R
    Dhar, D
    PHYSICAL REVIEW E, 2005, 71 (01):
  • [36] PERIMETER GENERATING FUNCTION FOR ROW-CONVEX POLYGONS ON THE RECTANGULAR LATTICE
    LIN, KY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (20): : 4703 - 4705
  • [37] A NOTE ON BOUNDS ON THE MINIMUM AREA OF CONVEX LATTICE POLYGONS
    COLBOURN, CJ
    SIMPSON, RJ
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1992, 45 (02) : 237 - 240
  • [38] Asymptotic behaviour of convex and column-convex lattice polygons with fixed area and varying perimeter
    Mitra, Mithun K.
    Menon, Gautam I.
    Rajesh, R.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [39] Bandit Convex Optimization: Towards Tight Bounds
    Hazan, Elad
    Levy, Kfir Y.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [40] TIGHT BOUNDS FOR STOCHASTIC CONVEX-PROGRAMS
    EDIRISINGHE, NCP
    ZIEMBA, WT
    OPERATIONS RESEARCH, 1992, 40 (04) : 660 - 677