A NOTE ON BOUNDS ON THE MINIMUM AREA OF CONVEX LATTICE POLYGONS

被引:4
|
作者
COLBOURN, CJ [1 ]
SIMPSON, RJ [1 ]
机构
[1] CURTIN UNIV TECHNOL,SCH MATH & STAT,PERTH,WA 6001,AUSTRALIA
关键词
D O I
10.1017/S0004972700030094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The minimum area a(v) of a v-sided convex lattice polygon is known to satisfy (v/2) less-than-or-equal-to a(2v) less-than-or-equal-to (v/3) -v+1. We conjecture that a(v) = cv3 + o(v3), for c a constant; we prove that a(v) less-than-or-equal-to (15/784)v3 + o(v3), and that for some positive constant c, a(v) greater-than-or-equal-to cv2.5.
引用
收藏
页码:237 / 240
页数:4
相关论文
共 50 条