Tight bounds on the maximal perimeter and the maximal width of convex small polygons

被引:0
|
作者
Christian Bingane
机构
[1] Polytechnique Montreal,Department of Mathematics and Industrial Engineering
来源
关键词
Planar geometry; Polygons; Isodiametric problems; Maximal perimeter; Maximal width; Global optimization; 52A40; 52A10; 52B55; 90C26;
D O I
暂无
中图分类号
学科分类号
摘要
A small polygon is a polygon of unit diameter. The maximal perimeter and the maximal width of a convex small polygon with n=2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2^s$$\end{document} vertices are not known when s≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \ge 4$$\end{document}. In this paper, we construct a family of convex small n-gons, n=2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2^s$$\end{document} and s≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 3$$\end{document}, and show that the perimeters and the widths obtained cannot be improved for large n by more than a/n6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a/n^6$$\end{document} and b/n4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b/n^4$$\end{document} respectively, for certain positive constants a and b. In addition, assuming that a conjecture of Mossinghoff is true, we formulate the maximal perimeter problem as a nonlinear optimization problem involving trigonometric functions and, for n=2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2^s$$\end{document} with 3≤s≤7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 \le s\le 7$$\end{document}, we provide global optimal solutions.
引用
收藏
页码:1033 / 1051
页数:18
相关论文
共 50 条