Maximal perimeter, diameter and area of equilateral unit-width convex polygons

被引:0
|
作者
Charles Audet
Jordan Ninin
机构
[1] École Polytechnique de Montréal,GERAD and Département de Mathématiques et de Génie Industriel
[2] Université Paul Sabatier,Institut de Mathématique de Toulouse
来源
关键词
Convex polygon; Perimeter; Diameter; Area; Width; Sum of distances;
D O I
暂无
中图分类号
学科分类号
摘要
The paper answers the three distinct questions of maximizing the perimeter, diameter and area of equilateral unit-width convex polygons. The solution to each of these problems is trivially unbounded when the number of sides is even. We show that when this number is odd, the optimal solution to these three problems is identical, and arbitrarily close to a trapezoid. The paper also considers the maximization of the sum of distances between all pairs of vertices of equilateral unit-width convex polygons. Based on numerical experiments on the three first open cases, it is conjectured that the optimal solution to this fourth problem is the same trapezoid as for the three other problems.
引用
收藏
页码:1007 / 1016
页数:9
相关论文
共 18 条
  • [1] Maximal perimeter, diameter and area of equilateral unit-width convex polygons
    Audet, Charles
    Ninin, Jordan
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (03) : 1007 - 1016
  • [2] Tight bounds on the maximal perimeter of convex equilateral small polygons
    Christian Bingane
    Charles Audet
    [J]. Archiv der Mathematik, 2022, 119 : 325 - 336
  • [3] Tight bounds on the maximal perimeter of convex equilateral small polygons
    Bingane, Christian
    Audet, Charles
    [J]. ARCHIV DER MATHEMATIK, 2022, 119 (03) : 325 - 336
  • [4] Tight bounds on the maximal perimeter and the maximal width of convex small polygons
    Christian Bingane
    [J]. Journal of Global Optimization, 2022, 84 : 1033 - 1051
  • [5] Tight bounds on the maximal perimeter and the maximal width of convex small polygons
    Bingane, Christian
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2022, 84 (04) : 1033 - 1051
  • [6] On convex polygons of maximal width
    Bezdek, A
    Fodor, F
    [J]. ARCHIV DER MATHEMATIK, 2000, 74 (01) : 75 - 80
  • [7] On convex polygons of maximal width
    A. Bezdek
    F. Fodor
    [J]. Archiv der Mathematik, 2000, 74 : 75 - 80
  • [8] Maximal Area of Equilateral Small Polygons
    Audet, Charles
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (02): : 175 - 178
  • [9] Bundling three convex polygons to minimize area or perimeter
    Park, Dongwoo
    Bae, Sang Won
    Alt, Helmut
    Ahn, Hee-Kap
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2016, 51 : 1 - 14
  • [10] The classification of convex polygons with triangular area or perimeter bisecting deltoids
    Allan Berele
    Stefan Catoiu
    [J]. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2022, 63 : 95 - 114