Maximal Area of Equilateral Small Polygons

被引:5
|
作者
Audet, Charles [1 ,2 ]
机构
[1] Ecole Polytech, GERAD, Montreal, PQ, Canada
[2] Ecole Polytech, Dept Math & Genie Ind, Montreal, PQ, Canada
来源
AMERICAN MATHEMATICAL MONTHLY | 2017年 / 124卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
SMALL OCTAGON;
D O I
10.4169/amer.math.monthly.124.2.175
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that among all equilateral polygons with a given number of sides and the same diameter, the regular polygon has the maximal area.
引用
收藏
页码:175 / 178
页数:4
相关论文
共 50 条
  • [1] Tight bounds on the maximal perimeter of convex equilateral small polygons
    Christian Bingane
    Charles Audet
    [J]. Archiv der Mathematik, 2022, 119 : 325 - 336
  • [2] Tight bounds on the maximal perimeter of convex equilateral small polygons
    Bingane, Christian
    Audet, Charles
    [J]. ARCHIV DER MATHEMATIK, 2022, 119 (03) : 325 - 336
  • [3] Maximal perimeter, diameter and area of equilateral unit-width convex polygons
    Audet, Charles
    Ninin, Jordan
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (03) : 1007 - 1016
  • [4] Maximal perimeter, diameter and area of equilateral unit-width convex polygons
    Charles Audet
    Jordan Ninin
    [J]. Journal of Global Optimization, 2013, 56 : 1007 - 1016
  • [5] Tight Bounds on the Maximal Area of Small Polygons: Improved Mossinghoff Polygons
    Christian Bingane
    [J]. Discrete & Computational Geometry, 2023, 70 : 236 - 248
  • [6] Tight Bounds on the Maximal Area of Small Polygons: Improved Mossinghoff Polygons
    Bingane, Christian
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (01) : 236 - 248
  • [7] THE EQUILATERAL SMALL OCTAGON OF MAXIMAL WIDTH
    Bingane, Christian
    Audet, Charles
    [J]. MATHEMATICS OF COMPUTATION, 2022, 91 (336) : 2027 - 2040
  • [8] Dividing a sphere into equal-area and/or equilateral spherical polygons
    Javan, Anooshe Rezaee
    Lee, Ting-Uei
    Xi, Yi Min
    [J]. JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2022, 9 (02) : 826 - 836
  • [9] An isodiametric problem for equilateral polygons
    Mossinghoff, Michael J.
    [J]. TAPAS IN EXPERIMENTAL MATHEMATICS, 2008, 457 : 237 - 252
  • [10] Circumscribed Polygons of Small Area
    Dan Ismailescu
    [J]. Discrete & Computational Geometry, 2009, 41 : 583 - 589