Fast Evaluation of Far-Field Signals for Time-Domain Wave Propagation

被引:0
|
作者
Scott E. Field
Stephen R. Lau
机构
[1] University of Maryland,Department of Physics, Joint Space Science Institute, Maryland Center for Fundamental Physics
[2] Cornell University,Center for Radiophysics and Space Research
[3] University of New Mexico,Department of Mathematics and Statistics
来源
关键词
Pole Location; Radiation Boundary Condition; Quadruple Precision; Cancellation Error; Precision Format;
D O I
暂无
中图分类号
学科分类号
摘要
Time-domain simulation of wave phenomena on a finite computational domain often requires a fictitious outer boundary. An important practical issue is the specification of appropriate boundary conditions on this boundary, often conditions of complete transparency. Attention to this issue has been paid elsewhere, and here we consider a different, although related, issue: far-field signal recovery. Namely, from smooth data recorded on the outer boundary we wish to recover the far-field signal which would reach arbitrarily large distances. These signals encode information about interior scatterers and often correspond to actual measurements. This article expresses far-field signal recovery in terms of time-domain convolutions, each between a solution multipole moment recorded at the boundary and a sum-of-exponentials kernel. Each exponential corresponds to a pole term in the Laplace transform of the kernel, a finite sum of simple poles. Greengard, Hagstrom, and Jiang have derived the large-ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} (spherical-harmonic index) asymptotic expansion for the pole residues, and their analysis shows that, when expressed in terms of the exact sum-of-exponentials, large-ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} signal recovery is plagued by cancellation errors. Nevertheless, through an alternative integral representation of the kernel and its subsequent approximation by a smaller number of exponential terms (kernel compression), we are able to alleviate these errors and achieve accurate signal recovery. We empirically examine scaling relations between the parameters which determine a compressed kernel, and perform numerical tests of signal “teleportation” from one radial value r1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_1$$\end{document} to another r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_2$$\end{document}, including the case r2=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_2=\infty $$\end{document}. We conclude with a brief discussion on application to other hyperbolic equations posed on non-flat geometries where waves undergo backscatter.
引用
收藏
页码:647 / 669
页数:22
相关论文
共 50 条
  • [1] Fast Evaluation of Far-Field Signals for Time-Domain Wave Propagation
    Field, Scott E.
    Lau, Stephen R.
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 64 (03) : 647 - 669
  • [2] Time-Domain Far-Field Analysis of Radiation Sources
    Miller, E. K.
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2011, 53 (05) : 81 - 97
  • [3] Time-domain far-field analysis of radiation sources
    Miller, EK
    Burke, GJ
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-4: TRANSMITTING WAVES OF PROGRESS TO THE NEXT MILLENNIUM, 2000, : 2058 - 2061
  • [4] Time-Domain Far-Field Measurements for Cross-Correlation Analysis
    Kuznetsov, Y.
    Baev, A.
    Haider, M.
    Russer, J. A.
    Russer, P.
    2017 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2017, : 1517 - 1520
  • [5] An improved time-domain near-field to far-field transform in two dimensions
    Roden, J. A.
    Johns, S. L.
    Sacchini, J.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2008, 23 (01): : 1 - 4
  • [6] TIME-DOMAIN FAR-FIELD SCATTERING OF PLANE SCALAR WAVES IN THE BORN APPROXIMATION
    DEHOOP, AT
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1985, 2 (11): : 1961 - 1964
  • [7] A time-domain near- to far-field transformation for FDTD in two dimensions
    García, SG
    Olmedo, BG
    Martín, RG
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2000, 27 (06) : 427 - 432
  • [8] A NEAR AND FAR-FIELD PROJECTION ALGORITHM FOR FINITE-DIFFERENCE TIME-DOMAIN CODES
    BARTH, MJ
    MCLEOD, RR
    ZIOLKOWSKI, RW
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 1992, 6 (01) : 5 - 18
  • [9] Far-field time-domain calculation from aperture radiators using the FDTD method
    Sullivan, D
    Young, JL
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2001, 49 (03) : 464 - 469
  • [10] Time-Domain Far-Field Analysis of Radiation Sources and Point-Source Coherence
    Miller, E. K.
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2012, 54 (02) : 100 - 108