Fast Evaluation of Far-Field Signals for Time-Domain Wave Propagation

被引:0
|
作者
Scott E. Field
Stephen R. Lau
机构
[1] University of Maryland,Department of Physics, Joint Space Science Institute, Maryland Center for Fundamental Physics
[2] Cornell University,Center for Radiophysics and Space Research
[3] University of New Mexico,Department of Mathematics and Statistics
来源
关键词
Pole Location; Radiation Boundary Condition; Quadruple Precision; Cancellation Error; Precision Format;
D O I
暂无
中图分类号
学科分类号
摘要
Time-domain simulation of wave phenomena on a finite computational domain often requires a fictitious outer boundary. An important practical issue is the specification of appropriate boundary conditions on this boundary, often conditions of complete transparency. Attention to this issue has been paid elsewhere, and here we consider a different, although related, issue: far-field signal recovery. Namely, from smooth data recorded on the outer boundary we wish to recover the far-field signal which would reach arbitrarily large distances. These signals encode information about interior scatterers and often correspond to actual measurements. This article expresses far-field signal recovery in terms of time-domain convolutions, each between a solution multipole moment recorded at the boundary and a sum-of-exponentials kernel. Each exponential corresponds to a pole term in the Laplace transform of the kernel, a finite sum of simple poles. Greengard, Hagstrom, and Jiang have derived the large-ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} (spherical-harmonic index) asymptotic expansion for the pole residues, and their analysis shows that, when expressed in terms of the exact sum-of-exponentials, large-ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} signal recovery is plagued by cancellation errors. Nevertheless, through an alternative integral representation of the kernel and its subsequent approximation by a smaller number of exponential terms (kernel compression), we are able to alleviate these errors and achieve accurate signal recovery. We empirically examine scaling relations between the parameters which determine a compressed kernel, and perform numerical tests of signal “teleportation” from one radial value r1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_1$$\end{document} to another r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_2$$\end{document}, including the case r2=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_2=\infty $$\end{document}. We conclude with a brief discussion on application to other hyperbolic equations posed on non-flat geometries where waves undergo backscatter.
引用
收藏
页码:647 / 669
页数:22
相关论文
共 50 条
  • [41] Local spectral time-domain method for electromagnetic wave propagation
    Bao, G
    Wei, GW
    Zhao, S
    OPTICS LETTERS, 2003, 28 (07) : 513 - 515
  • [42] Efficient SPH simulation of time-domain acoustic wave propagation
    Zhang, Y. O.
    Zhang, T.
    Ouyang, H.
    Li, T. Y.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2016, 62 : 112 - 122
  • [43] Time-domain modeling of electromagnetic wave propagation in complex materials
    Paul, J.
    Christopoulos, C.
    Thomas, D.W.P.
    Electromagnetics, 19 (06): : 527 - 546
  • [44] Time-domain modeling of electromagnetic wave propagation in complex materials
    Paul, J
    Christopoulos, C
    Thomas, DWP
    ELECTROMAGNETICS, 1999, 19 (06) : 527 - 546
  • [45] Bipolar ventricular far-field signals in the atrium
    Fröhlig, G
    Helwani, Z
    Kusch, O
    Berg, M
    Schieffer, H
    PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 1999, 22 (11): : 1604 - 1613
  • [46] W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging
    Bleh, Daniela
    Roesch, Markus
    Kuri, Michael
    Dyck, Alexander
    Tessmann, Axel
    Leuther, Arnulf
    Wagner, Sandrine
    Weismann-Thaden, B.
    Stulz, H. -P.
    Zink, Martin
    Riessle, M.
    Sommer, R.
    Wilcke, J.
    Schlechtweg, M.
    Yang, B.
    Ambacher, Oliver
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2017, 65 (09) : 3474 - 3484
  • [47] WAVE KINEMATICS IN A GROIN FIELD TIME-DOMAIN ANALYSIS
    SUNDAR, V
    NOETHEL, N
    HOLZ, KP
    JOURNAL OF COASTAL RESEARCH, 1993, 9 (03) : 831 - 846
  • [48] Modification to time domain near-field to far-field transformation for FDTD method
    Giannopoulos, A
    Randhawa, BS
    Tealby, JM
    Marvin, AC
    ELECTRONICS LETTERS, 1997, 33 (25) : 2132 - 2133
  • [49] Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry
    Gay, G
    Alloschery, O
    de Lesegno, BV
    Weiner, J
    Lezec, HJ
    PHYSICAL REVIEW LETTERS, 2006, 96 (21)
  • [50] Far-field evanescent wave propagation using coupled subwavelength gratings for a MEMS sensor
    Rogers, Al-Aakhir A.
    Samson, Scott
    Kedia, Sunny
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (12) : 2526 - 2531