Fast Evaluation of Far-Field Signals for Time-Domain Wave Propagation

被引:0
|
作者
Scott E. Field
Stephen R. Lau
机构
[1] University of Maryland,Department of Physics, Joint Space Science Institute, Maryland Center for Fundamental Physics
[2] Cornell University,Center for Radiophysics and Space Research
[3] University of New Mexico,Department of Mathematics and Statistics
来源
关键词
Pole Location; Radiation Boundary Condition; Quadruple Precision; Cancellation Error; Precision Format;
D O I
暂无
中图分类号
学科分类号
摘要
Time-domain simulation of wave phenomena on a finite computational domain often requires a fictitious outer boundary. An important practical issue is the specification of appropriate boundary conditions on this boundary, often conditions of complete transparency. Attention to this issue has been paid elsewhere, and here we consider a different, although related, issue: far-field signal recovery. Namely, from smooth data recorded on the outer boundary we wish to recover the far-field signal which would reach arbitrarily large distances. These signals encode information about interior scatterers and often correspond to actual measurements. This article expresses far-field signal recovery in terms of time-domain convolutions, each between a solution multipole moment recorded at the boundary and a sum-of-exponentials kernel. Each exponential corresponds to a pole term in the Laplace transform of the kernel, a finite sum of simple poles. Greengard, Hagstrom, and Jiang have derived the large-ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} (spherical-harmonic index) asymptotic expansion for the pole residues, and their analysis shows that, when expressed in terms of the exact sum-of-exponentials, large-ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} signal recovery is plagued by cancellation errors. Nevertheless, through an alternative integral representation of the kernel and its subsequent approximation by a smaller number of exponential terms (kernel compression), we are able to alleviate these errors and achieve accurate signal recovery. We empirically examine scaling relations between the parameters which determine a compressed kernel, and perform numerical tests of signal “teleportation” from one radial value r1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_1$$\end{document} to another r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_2$$\end{document}, including the case r2=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_2=\infty $$\end{document}. We conclude with a brief discussion on application to other hyperbolic equations posed on non-flat geometries where waves undergo backscatter.
引用
收藏
页码:647 / 669
页数:22
相关论文
共 50 条
  • [31] Time-Domain Modeling of Noisy Electromagnetic Field Propagation
    Russer, Johannes A.
    Haider, Michael
    2018 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM - IMS, 2018, : 1013 - 1016
  • [32] Parallel Implementation of a Combined Moment Expansion and Spherical-Multipole Time-Domain Near-Field to Far-Field Transformation
    Ramos, Glaucio L.
    Rego, Cassio G.
    Fonseca, Alexandre R.
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 609 - 612
  • [33] Time-domain far fields
    Yaghjian, AD
    Hansen, TB
    JOURNAL OF APPLIED PHYSICS, 1996, 79 (06) : 2822 - 2830
  • [34] FAR-FIELD SIGNATURES BY WAVE FIELD EXTRAPOLATION
    HARGREAVES, N
    GEOPHYSICS, 1985, 50 (02) : 301 - 301
  • [35] Computationally efficient scalar nonparaxial modeling of optical wave propagation in the far-field
    Nguyen, Giang-Nam
    Heggarty, Kevin
    Gerard, Philippe
    Serio, Bruno
    Meyrueis, Patrick
    APPLIED OPTICS, 2014, 53 (10) : 2196 - 2205
  • [36] Evaluation of Time-Domain Features of Sensory ENG Signals
    Silveira, Carolina
    Brunton, Emma
    Khushaba, Rami
    Nazarpour, Kianoush
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 2438 - 2441
  • [37] TIME-DOMAIN EXTRAPOLATION TO THE FAR FIELD BASED ON FDTD CALCULATIONS
    YEE, KS
    INGHAM, D
    SHLAGER, K
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1991, 39 (03) : 410 - 413
  • [38] Crack detection using time-domain wave propagation technique
    Univ of Texas at El Paso, El Paso, United States
    J Geotech Eng, 2 (198-207):
  • [39] ON THE STABILITY OF TIME-DOMAIN INTEGRAL EQUATIONS FOR ACOUSTIC WAVE PROPAGATION
    Epstein, Charles L.
    Greengard, Leslie
    Hagstrom, Thomas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (08) : 4367 - 4382
  • [40] A modular methodology for time-domain stochastic seismic wave propagation
    Wang, Fangbo
    Wang, Hexiang
    Yang, Han
    Feng, Yuan
    Jeremic, Boris
    COMPUTERS AND GEOTECHNICS, 2021, 139