Fast Evaluation of Far-Field Signals for Time-Domain Wave Propagation

被引:0
|
作者
Scott E. Field
Stephen R. Lau
机构
[1] University of Maryland,Department of Physics, Joint Space Science Institute, Maryland Center for Fundamental Physics
[2] Cornell University,Center for Radiophysics and Space Research
[3] University of New Mexico,Department of Mathematics and Statistics
来源
关键词
Pole Location; Radiation Boundary Condition; Quadruple Precision; Cancellation Error; Precision Format;
D O I
暂无
中图分类号
学科分类号
摘要
Time-domain simulation of wave phenomena on a finite computational domain often requires a fictitious outer boundary. An important practical issue is the specification of appropriate boundary conditions on this boundary, often conditions of complete transparency. Attention to this issue has been paid elsewhere, and here we consider a different, although related, issue: far-field signal recovery. Namely, from smooth data recorded on the outer boundary we wish to recover the far-field signal which would reach arbitrarily large distances. These signals encode information about interior scatterers and often correspond to actual measurements. This article expresses far-field signal recovery in terms of time-domain convolutions, each between a solution multipole moment recorded at the boundary and a sum-of-exponentials kernel. Each exponential corresponds to a pole term in the Laplace transform of the kernel, a finite sum of simple poles. Greengard, Hagstrom, and Jiang have derived the large-ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} (spherical-harmonic index) asymptotic expansion for the pole residues, and their analysis shows that, when expressed in terms of the exact sum-of-exponentials, large-ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} signal recovery is plagued by cancellation errors. Nevertheless, through an alternative integral representation of the kernel and its subsequent approximation by a smaller number of exponential terms (kernel compression), we are able to alleviate these errors and achieve accurate signal recovery. We empirically examine scaling relations between the parameters which determine a compressed kernel, and perform numerical tests of signal “teleportation” from one radial value r1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_1$$\end{document} to another r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_2$$\end{document}, including the case r2=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_2=\infty $$\end{document}. We conclude with a brief discussion on application to other hyperbolic equations posed on non-flat geometries where waves undergo backscatter.
引用
收藏
页码:647 / 669
页数:22
相关论文
共 50 条
  • [21] TIME-DOMAIN FAR-FIELD SCATTERING OF PLANE ACOUSTIC-WAVES BY A PENETRABLE OBJECT IN THE BORN APPROXIMATION
    QUAK, D
    DEHOOP, AT
    STAM, HJ
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1986, 80 (04): : 1228 - 1234
  • [22] Novel Approach for Time-Domain Modeling a Full Anechoic Chamber for Near/Far-Field Antennas Measurement
    Taybi, Chakib
    Moutaouekkil, Mohammed Anisse
    Elmagroud, Bachir
    Ziyyat, Abdelhak
    2018 INTERNATIONAL SYMPOSIUM ON ADVANCED ELECTRICAL AND COMMUNICATION TECHNOLOGIES (ISAECT), 2018,
  • [23] Fast Far-field Computations for Finite Element Domain Decomposition Method
    Wang, Wei
    Vouvakis, Marinos N.
    2015 USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM) PROCEEDINGS, 2015, : 78 - 78
  • [24] Time-domain wave splitting and propagation in dispersive media
    He, SL
    Strom, S
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1996, 13 (11): : 2200 - 2207
  • [25] TIME-DOMAIN WAVE-PROPAGATION IN OPTICAL STRUCTURES
    CHAN, RY
    LIU, JM
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1994, 6 (08) : 1001 - 1003
  • [26] Parallel simulation of time-domain acoustic wave propagation
    Mocnik-Berljavac, Jure
    Slak, Jure
    Kosec, Gregor
    2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2019, : 212 - 217
  • [28] Time-domain wave splitting and propagation in dispersive media
    Department of Electromagnetic Theory, Royal Institute of Technology, S-100 44 Stockholm, Sweden
    J Opt Soc Am A, 11 (2200-2207):
  • [29] COMPUTATION OF THE FAR-FIELD TIME DOMAIN SOLUTION OF THE SCATTERING PROBLEM
    POURJAVID, S
    TRETIAK, OJ
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1992, 91 (02): : 646 - 651
  • [30] Time-Domain Modeling of Noisy Electromagnetic Field Propagation
    Russer, Johannes A.
    Haider, Michael
    Russer, Peter
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2018, 66 (12) : 5415 - 5428