Classification of Hamiltonian Non-Abelian Painlevé Type Systems

被引:0
|
作者
Irina Bobrova
Vladimir Sokolov
机构
[1] National Research Univerisity Higher School of Economics,
[2] L.D. Landau Institute for Theoretical Physics,undefined
关键词
Non-abelian ODEs; Painlevé equations; Isomonodromic Lax pairs;
D O I
暂无
中图分类号
学科分类号
摘要
All Hamiltonian non-abelian Painlevé systems of P1-P6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{P_{1}}\,}}-{{\,\mathrm{P_{6}}\,}}$$\end{document} type with constant coefficients are found. For P1-P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{P_{1}}\,}}-{{\,\mathrm{P_{5}}\,}}$$\end{document} systems, we replace an appropriate inessential constant parameter with a non-abelian constant. To prove the integrability of new P3′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{P_{3}^{\prime }}\,}}$$\end{document} and P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{P_{5}}\,}}$$\end{document} systems thus obtained, we find isomonodromic Lax pairs for them.
引用
收藏
页码:646 / 662
页数:16
相关论文
共 50 条
  • [41] Non-abelian gauge fields in circuit systems
    Wu, Jiexiong
    Wang, Zhu
    Biao, Yuanchuan
    Fei, Fucong
    Zhang, Shuai
    Yin, Zepeng
    Hu, Yejian
    Song, Ziyin
    Wu, Tianyu
    Song, Fengqi
    Yu, Rui
    NATURE ELECTRONICS, 2022, 5 (10) : 635 - 642
  • [42] QUASI-ABELIAN AND FULLY NON-ABELIAN GAUGE FIELD COPIES - A CLASSIFICATION
    DORIA, FA
    JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (12) : 2943 - 2951
  • [43] Abelian representation for the non-Abelian Wilson loop and the non-Abelian Stokes theorem on the lattice
    Zubkov, MA
    PHYSICAL REVIEW D, 2003, 68 (05)
  • [44] Abelian and non-Abelian geometric phases in adiabatic open quantum systems
    Sarandy, M. S.
    Lidar, D. A.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [45] Josephson junction of non-Abelian superconductors and non-Abelian Josephson vortices
    Nitta, Muneto
    NUCLEAR PHYSICS B, 2015, 899 : 78 - 90
  • [46] Note on Schwinger mechanism and a non-Abelian instability in a non-Abelian plasma
    Nair, V. P.
    Yelnikov, Alexandr
    PHYSICAL REVIEW D, 2010, 82 (12):
  • [47] Non-Abelian Holonomy in Degenerate Non-Hermitian Systems
    Shan, Zhong-Lei
    Sun, Yi-Ke
    Tao, Ran
    Chen, Qi-Dai
    Tian, Zhen-Nan
    Zhang, Xu-Lin
    PHYSICAL REVIEW LETTERS, 2024, 133 (05)
  • [48] Non-Abelian supertubes
    Fernandez-Melgarejo, Jose J.
    Park, Minkyu
    Shigemori, Masaki
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12):
  • [49] Unveiling a spinor field classification with non-Abelian gauge symmetries
    Fabbri, Luca
    da Rocha, Roldao
    PHYSICS LETTERS B, 2018, 780 : 427 - 431
  • [50] The quintessence with Abelian and non-Abelian symmetry
    Li, XZ
    Hao, JG
    Liu, DJ
    Zhai, XH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (32): : 5921 - 5930