Josephson junction of non-Abelian superconductors and non-Abelian Josephson vortices

被引:13
|
作者
Nitta, Muneto [1 ,2 ]
机构
[1] Keio Univ, Dept Phys, Hiyoshi 4-1-1, Yokohama, Kanagawa 2238521, Japan
[2] Keio Univ, Res & Educ Ctr Nat Sci, Yokohama, Kanagawa 2238521, Japan
关键词
SIGMA-MODELS; MODULI SPACE; BPS WALLS; SOLITONS; KAHLER; PHASE;
D O I
10.1016/j.nuclphysb.2015.07.027
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A Josephson junction is made of two superconductors sandwiching an insulator, and a Josephson vortex is a magnetic vortex (flux tube) absorbed into the Josephson junction, whose dynamics can be described by the sine-Gordon equation. In a field theory framework, a flexible Josephson junction was proposed, in which the Josephson junction is represented by a domain wall separating two condensations and a Josephson vortex is a sine-Gordon soliton in the domain wall effective theory. In this paper, we propose a Josephson junction of non-Abelian color superconductors and show that a non-Abelian vortex (color magnetic flux tube) absorbed into it is a non-Abelian Josephson vortex represented as a non-Abelian sine-Gordon soliton in the domain wall effective theory, that is the U(N) principal chiral model. (C) 2015 The Author. Published by Elsevier B.V.
引用
收藏
页码:78 / 90
页数:13
相关论文
共 50 条
  • [1] Josephson instantons and Josephson monopoles in a non-Abelian Josephson junction
    Nitta, Muneto
    [J]. PHYSICAL REVIEW D, 2015, 92 (04):
  • [2] NON-ABELIAN VORTICES AND NON-ABELIAN STATISTICS
    LO, HK
    PRESKILL, J
    [J]. PHYSICAL REVIEW D, 1993, 48 (10) : 4821 - 4834
  • [3] Non-Abelian vortices in holographic superconductors
    Tallarita, Gianni
    [J]. PHYSICAL REVIEW D, 2016, 93 (06)
  • [4] Field theoretic description of the Abelian and non-Abelian Josephson effect
    Esposito, F. Paul
    Guay, L.-P.
    MacKenzie, R. B.
    Paranjape, M. B.
    Wijewardhana, L. C. R.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (24)
  • [5] Non-Abelian statistics of vortices with non-Abelian Dirac fermions
    Yasui, Shigehiro
    Hirono, Yuji
    Itakura, Kazunori
    Nitta, Muneto
    [J]. PHYSICAL REVIEW E, 2013, 87 (05):
  • [6] Non-Abelian monopoles in the multiterminal Josephson effect
    Xie, Hong-Yi
    Hasan, Jaglul
    Levchenko, Alex
    [J]. PHYSICAL REVIEW B, 2022, 105 (24)
  • [7] Twisted non-Abelian vortices
    Forgacs, Peter
    Lukacs, Arpad
    Schaposnik, Fidel A.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (28-29):
  • [8] Non-abelian vortices on the torus
    Sergio Lozano, Gustavo
    Marques, Diego
    Arturo Schaposnik, Fidel
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2007, (09):
  • [9] Non-Abelian global vortices
    Eto, Minoru
    Nakano, Eiji
    Nitta, Muneto
    [J]. NUCLEAR PHYSICS B, 2009, 821 (1-2) : 129 - 150
  • [10] Dyonic non-Abelian vortices
    Collie, Benjamin
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (08)