Non-Abelian monopoles in the multiterminal Josephson effect

被引:0
|
作者
Xie, Hong-Yi [1 ]
Hasan, Jaglul [2 ]
Levchenko, Alex [2 ]
机构
[1] Beijing Acad Quantum Informat Sci, Div Quantum State Matter, Beijing 100193, Peoples R China
[2] Univ Wisconsin Madison, Dept Phys, Madison, WI 53706 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevB.105.L241404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this Letter we present a detailed theoretical analysis for the spectral properties of Andreev bound states in the multiterminal Josephson junctions by employing a symmetry-constrained scattering matrix approach. We find that in the synthetic multidimensional space of superconducting phases, crossings of Andreev bands may support non-Abelian SU(2) monopoles with a topological charge characterized by the second class Chern number. We propose that these topological defects can be detected via a nonlinear response measurement of the current autocorrelations. In addition, multiterminal Josephson junction devices can be tested as a hardware platform for realizing holonomic quantum computation.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Josephson instantons and Josephson monopoles in a non-Abelian Josephson junction
    Nitta, Muneto
    [J]. PHYSICAL REVIEW D, 2015, 92 (04):
  • [2] Non-abelian monopoles
    Auzzi, R
    Bolognesi, S
    Evslin, J
    Konishi, K
    Murayama, H
    [J]. NUCLEAR PHYSICS B, 2004, 701 (1-2) : 207 - 246
  • [3] Josephson junction of non-Abelian superconductors and non-Abelian Josephson vortices
    Nitta, Muneto
    [J]. NUCLEAR PHYSICS B, 2015, 899 : 78 - 90
  • [4] NON-ABELIAN MAGNETIC MONOPOLES
    MURRAY, MK
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 96 (04) : 539 - 565
  • [5] Non-Abelian monopoles and vortices
    Bradlow, SB
    GarciaPrada, O
    [J]. GEOMETRY AND PHYSICS, 1997, 184 : 567 - 589
  • [6] Field theoretic description of the Abelian and non-Abelian Josephson effect
    Esposito, F. Paul
    Guay, L.-P.
    MacKenzie, R. B.
    Paranjape, M. B.
    Wijewardhana, L. C. R.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (24)
  • [7] Nonlinear/noncommutative non-Abelian monopoles
    Hashimoto, K
    [J]. PHYSICAL REVIEW D, 2002, 65 (06)
  • [8] Topology, and (in)stability of non-Abelian monopoles
    Zhang, Peng-Ming
    Horvathy, Peter A.
    Rawnsley, John
    [J]. ANNALS OF PHYSICS, 2012, 327 (01) : 118 - 165
  • [9] Non-Abelian monopoles in the Higgs phase
    Nitta, Muneto
    Vinci, Walter
    [J]. NUCLEAR PHYSICS B, 2011, 848 (01) : 121 - 154
  • [10] Non-Abelian string junctions as confined monopoles
    Shifman, M
    Yung, A
    [J]. PHYSICAL REVIEW D, 2004, 70 (04):