Non-Abelian monopoles in the multiterminal Josephson effect

被引:0
|
作者
Xie, Hong-Yi [1 ]
Hasan, Jaglul [2 ]
Levchenko, Alex [2 ]
机构
[1] Beijing Acad Quantum Informat Sci, Div Quantum State Matter, Beijing 100193, Peoples R China
[2] Univ Wisconsin Madison, Dept Phys, Madison, WI 53706 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevB.105.L241404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this Letter we present a detailed theoretical analysis for the spectral properties of Andreev bound states in the multiterminal Josephson junctions by employing a symmetry-constrained scattering matrix approach. We find that in the synthetic multidimensional space of superconducting phases, crossings of Andreev bands may support non-Abelian SU(2) monopoles with a topological charge characterized by the second class Chern number. We propose that these topological defects can be detected via a nonlinear response measurement of the current autocorrelations. In addition, multiterminal Josephson junction devices can be tested as a hardware platform for realizing holonomic quantum computation.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] 't Hooft-Polyakov monopoles with non-Abelian moduli
    Shifman, M.
    Tallarita, G.
    Yung, A.
    [J]. PHYSICAL REVIEW D, 2015, 91 (10):
  • [42] On the Existence of Non-Abelian Monopoles: the Algebro-Geometric Approach
    Braden, H. W.
    Enolski, V. Z.
    [J]. XXIX WORKSHOP ON GEOMETRIC METHODS IN PHYSICS, 2010, 1307 : 53 - +
  • [43] Emergence of Non-Abelian Magnetic Monopoles in a Quantum Impurity Problem
    Yakaboylu, E.
    Deuchert, A.
    Lemeshko, M.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (23)
  • [44] MONOPOLES IN NON-ABELIAN CHERN-SIMONS-HIGGS THEORY
    EDELSTEIN, JD
    SCHAPOSNIK, FA
    [J]. NUCLEAR PHYSICS B, 1994, 425 (1-2) : 137 - 149
  • [45] LOW-ENERGY SCATTERING OF NON-ABELIAN MAGNETIC MONOPOLES
    ATIYAH, M
    HITCHIN, NJ
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 315 (1533): : 459 - 469
  • [46] Monopoles in non-Abelian Dirac-Born-Infeld theory
    Grandi, N
    Moreno, EF
    Schaposnik, FA
    [J]. PHYSICAL REVIEW D, 1999, 59 (12):
  • [47] Low energy dynamics of slender monopoles in non-Abelian superconductor
    Arai, M.
    Blaschke, F.
    Eto, M.
    Sakai, N.
    [J]. XXIII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-23), 2016, 670
  • [48] Monopoles in non-Abelian Einstein-Born-Infeld theory
    Tripathy, PK
    Schaposnik, FA
    [J]. PHYSICS LETTERS B, 2000, 472 (1-2) : 89 - 93
  • [49] Generalized monopoles in six-dimensional non-Abelian gauge theory
    Kihara, H
    Hosotani, Y
    Nitta, M
    [J]. PHYSICAL REVIEW D, 2005, 71 (04): : 041701 - 1
  • [50] NON-ABELIAN MONOPOLES IN THE 3-DIMENSIONAL CHIRAL SPIN LIQUID
    LIBBY, SB
    ZOU, Z
    LAUGHLIN, RB
    [J]. NUCLEAR PHYSICS B, 1991, 348 (03) : 693 - 713