Classification of Hamiltonian Non-Abelian Painlevé Type Systems

被引:0
|
作者
Irina Bobrova
Vladimir Sokolov
机构
[1] National Research Univerisity Higher School of Economics,
[2] L.D. Landau Institute for Theoretical Physics,undefined
关键词
Non-abelian ODEs; Painlevé equations; Isomonodromic Lax pairs;
D O I
暂无
中图分类号
学科分类号
摘要
All Hamiltonian non-abelian Painlevé systems of P1-P6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{P_{1}}\,}}-{{\,\mathrm{P_{6}}\,}}$$\end{document} type with constant coefficients are found. For P1-P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{P_{1}}\,}}-{{\,\mathrm{P_{5}}\,}}$$\end{document} systems, we replace an appropriate inessential constant parameter with a non-abelian constant. To prove the integrability of new P3′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{P_{3}^{\prime }}\,}}$$\end{document} and P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{P_{5}}\,}}$$\end{document} systems thus obtained, we find isomonodromic Lax pairs for them.
引用
收藏
页码:646 / 662
页数:16
相关论文
共 50 条
  • [21] Maximally non-abelian Toda systems
    Razumov, AV
    Saveliev, MV
    NUCLEAR PHYSICS B, 1997, 494 (03) : 657 - 686
  • [22] Hamiltonian formalism for Fermi excitations in a plasma with a non-Abelian interaction
    Markov, Yu. A.
    Markova, M. A.
    Markov, N. Yu.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2023, 38 (02):
  • [23] Hamiltonian Formalism for Bose Excitations in a Plasma with a Non-Abelian Interaction
    Yu. A. Markov
    M. A. Markova
    N. Yu. Markov
    D. M. Gitman
    Journal of Experimental and Theoretical Physics, 2020, 130 : 274 - 286
  • [24] Hamiltonian Formalism for Bose Excitations in a Plasma with a Non-Abelian Interaction
    Markov, Yu. A.
    Markova, M. A.
    Markov, N. Yu.
    Gitman, D. M.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2020, 130 (02) : 274 - 286
  • [25] Pauli Hamiltonian for a spin one-half particle carrying a non-Abelian charge in the presence of non-Abelian external fields
    Dossa, Finagnon Anselme
    EPL, 2020, 131 (02)
  • [26] The Structure of One Type of Non-Abelian Group
    Huang Ben-wen
    Wuhan University Journal of Natural Sciences, 2002, (01) : 6 - 8
  • [27] Non-Abelian statistics of vortices with non-Abelian Dirac fermions
    Yasui, Shigehiro
    Hirono, Yuji
    Itakura, Kazunori
    Nitta, Muneto
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [28] ON NON-ABELIAN STARK-TYPE CONJECTURES
    Nickel, Andreas
    ANNALES DE L INSTITUT FOURIER, 2011, 61 (06) : 2577 - 2608
  • [29] HOW NON-ABELIAN IS NON-ABELIAN GAUGE-THEORY
    CRABB, MC
    SUTHERLAND, WA
    QUARTERLY JOURNAL OF MATHEMATICS, 1995, 46 (183): : 279 - 290
  • [30] On the classification of Schreier extensions of monoids with non-abelian kernel
    Martins-Ferreira, Nelson
    Montoli, Andrea
    Patchkoria, Alex
    Sobral, Manuela
    FORUM MATHEMATICUM, 2020, 32 (03) : 607 - 623