Classification of Hamiltonian Non-Abelian Painlevé Type Systems

被引:0
|
作者
Irina Bobrova
Vladimir Sokolov
机构
[1] National Research Univerisity Higher School of Economics,
[2] L.D. Landau Institute for Theoretical Physics,undefined
关键词
Non-abelian ODEs; Painlevé equations; Isomonodromic Lax pairs;
D O I
暂无
中图分类号
学科分类号
摘要
All Hamiltonian non-abelian Painlevé systems of P1-P6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{P_{1}}\,}}-{{\,\mathrm{P_{6}}\,}}$$\end{document} type with constant coefficients are found. For P1-P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{P_{1}}\,}}-{{\,\mathrm{P_{5}}\,}}$$\end{document} systems, we replace an appropriate inessential constant parameter with a non-abelian constant. To prove the integrability of new P3′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{P_{3}^{\prime }}\,}}$$\end{document} and P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{P_{5}}\,}}$$\end{document} systems thus obtained, we find isomonodromic Lax pairs for them.
引用
收藏
页码:646 / 662
页数:16
相关论文
共 50 条
  • [31] Dynamics of multiparticle systems with non-abelian symmetry
    Turko, L
    Rafelski, J
    EUROPEAN PHYSICAL JOURNAL C, 2001, 18 (03): : 587 - 592
  • [32] PROPAGATORS FOR RELATIVISTIC SYSTEMS WITH NON-ABELIAN INTERACTIONS
    CORNS, RA
    OSBORN, TA
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (04) : 901 - 915
  • [33] Measures of entanglement in non-Abelian anyonic systems
    Pfeifer, Robert N. C.
    PHYSICAL REVIEW B, 2014, 89 (03)
  • [34] Non-Abelian Evolution Systems with Conservation Laws
    V. E. Adler
    V. V. Sokolov
    Mathematical Physics, Analysis and Geometry, 2021, 24
  • [35] STRUCTURE AND SPECTRUM OF THE HAMILTONIAN OF CONSTANT SU(2) NON-ABELIAN FIELDS
    VANAGAS, VV
    KATKEVICIUS, OD
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1987, 46 (04): : 750 - 755
  • [36] Non-Abelian gauge fields in circuit systems
    Jiexiong Wu
    Zhu Wang
    Yuanchuan Biao
    Fucong Fei
    Shuai Zhang
    Zepeng Yin
    Yejian Hu
    Ziyin Song
    Tianyu Wu
    Fengqi Song
    Rui Yu
    Nature Electronics, 2022, 5 : 635 - 642
  • [37] Non-Abelian gauge potentials in Rydberg systems
    Zygelman, B.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (13)
  • [38] Classification of conformality models based on non-Abelian orbifolds
    Frampton, PH
    Kephart, TW
    PHYSICAL REVIEW D, 2001, 64 (08)
  • [39] BFT Hamiltonian embedding of non-Abelian self-dual model
    Kim, YW
    Rothe, KD
    NUCLEAR PHYSICS B, 1998, 511 (1-2) : 510 - 520
  • [40] Non-Abelian Evolution Systems with Conservation Laws
    Adler, V. E.
    Sokolov, V. V.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2021, 24 (01)