A convolution inequality

被引:0
|
作者
Pycia M. [1 ]
机构
[1] Leon Koźminski Academy of Entrepreneurship and Management, 03-301 Warsaw
关键词
Functional inequality; Functions convex on a restricted domain; Integral convolution inequality;
D O I
10.1007/s000100050076
中图分类号
学科分类号
摘要
We show that every nonnegative measurable solution of the convolution inequality φ(t)≥ ∫E φ(t + s)dμ(s), t ∈ E, (where E is a closed additive subgroup of ℝ and μ a suitable measure) is equal almost everywhere to an exponential function.) © Birkhäuser Verlag, Basel, 1999.
引用
下载
收藏
页码:185 / 200
页数:15
相关论文
共 50 条
  • [31] THE O'NEIL INEQUALITY FOR THE HANKEL CONVOLUTION OPERATOR AND SOME APPLICATIONS
    Aykol, C.
    Guliyev, V. S.
    Serbetci, A.
    EURASIAN MATHEMATICAL JOURNAL, 2013, 4 (03): : 8 - 19
  • [32] An inequality concerning the growth bound of an evolution family and the norm of a convolution operator
    Buse, Constantin
    O'Regan, Donal
    Saierli, Olivia
    SEMIGROUP FORUM, 2017, 94 (03) : 618 - 631
  • [33] An inequality concerning the growth bound of an evolution family and the norm of a convolution operator
    Constantin Buşe
    Donal O’Regan
    Olivia Saierli
    Semigroup Forum, 2017, 94 : 618 - 631
  • [34] Sparse channel estimation with regularization method using convolution inequality for entropy
    Han, DH
    Kim, SP
    Principe, JC
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 2359 - 2362
  • [35] On the special form of integral convolution type inequality due to Walter and Weckesser
    Malolepszy, Tomasz
    Matkowski, Janusz
    AEQUATIONES MATHEMATICAE, 2019, 93 (01) : 9 - 19
  • [36] Strong-Type Inequality for Convolution with Square Root of the Poisson Kernel
    I. N. Katkovskaya
    V. G. Krotov
    Mathematical Notes, 2004, 75 : 542 - 552
  • [38] Strong-type inequality for convolution with square root of the Poisson kernel
    Katkovskaya, IN
    Krotov, VG
    MATHEMATICAL NOTES, 2004, 75 (3-4) : 542 - 552
  • [40] On the special form of integral convolution type inequality due to Walter and Weckesser
    Tomasz Małolepszy
    Janusz Matkowski
    Aequationes mathematicae, 2019, 93 : 9 - 19