An inequality concerning the growth bound of an evolution family and the norm of a convolution operator

被引:0
|
作者
Constantin Buşe
Donal O’Regan
Olivia Saierli
机构
[1] Politehnica University of Timisoara,Department of Mathematics
[2] National University of Ireland,School of Mathematics, Statistics and Applied Mathematics
[3] Tibiscus University of Timisoara,Department of Computer Science and Applied Informatics
来源
Semigroup Forum | 2017年 / 94卷
关键词
Uniform exponential stability; Growth bounds; Exponentially bounded evolution families of operators; Convolution operator on function spaces; One dimensional heat equation;
D O I
暂无
中图分类号
学科分类号
摘要
Let U={U(t,s)}t≥s≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}=\{U(t,s)\}_{t\ge s\ge 0}$$\end{document} be a strongly continuous and exponentially bounded evolution family acting on a complex Banach space X and let X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document} be a certain Banach function space of X-valued functions. We prove that the growth bound of the family U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document} is less than or equal to -1c(U,X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\frac{1}{c(\mathcal {U}, \mathcal {X})}$$\end{document} provided that the convolution operator f↦U∗f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\mapsto \mathcal {U}*f$$\end{document} acts on X.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}.$$\end{document} It is well known that under the latter assumption, the convolution operator is bounded and then c(U,X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(\mathcal {U}, \mathcal {X})$$\end{document} denotes (ad-hoc) its norm in L(X).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(\mathcal {X}).$$\end{document} As a consequence, we prove that if sups≥0∫s∞‖U(t,s)‖dt=u1(U)<∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sup \nolimits _{s\ge 0}\int \nolimits _{s}^\infty \Vert U(t,s)\Vert dt=u_1(\mathcal {U})<\infty ,$$\end{document} then ω0(U)u1(U)≤-1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0(\mathcal {U})u_1(\mathcal {U})\le -1.$$\end{document} Finally, we give an example showing that the accuracy of the estimates may be quite accurate.
引用
收藏
页码:618 / 631
页数:13
相关论文
共 50 条