A convolution inequality

被引:0
|
作者
Pycia M. [1 ]
机构
[1] Leon Koźminski Academy of Entrepreneurship and Management, 03-301 Warsaw
关键词
Functional inequality; Functions convex on a restricted domain; Integral convolution inequality;
D O I
10.1007/s000100050076
中图分类号
学科分类号
摘要
We show that every nonnegative measurable solution of the convolution inequality φ(t)≥ ∫E φ(t + s)dμ(s), t ∈ E, (where E is a closed additive subgroup of ℝ and μ a suitable measure) is equal almost everywhere to an exponential function.) © Birkhäuser Verlag, Basel, 1999.
引用
下载
收藏
页码:185 / 200
页数:15
相关论文
共 50 条
  • [21] A maximal inequality for pth power of stochastic convolution integrals
    Erfan Salavati
    Bijan Z Zangeneh
    Journal of Inequalities and Applications, 2016
  • [22] A convolution inequality for entropy over Z2
    Jog, Varun
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017,
  • [23] A maximal inequality for pth power of stochastic convolution integrals
    Salavati, Erfan
    Zangeneh, Bijan Z.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [24] On the convex infimum convolution inequality with optimal cost function
    Strzelecka, Marta
    Strzelecki, Michal
    Tkocz, Tomasz
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (02): : 903 - 915
  • [26] Inequality on the optimal constant of Young’s convolution inequality for locally compact groups and their closed subgroups
    Takashi Satomi
    Annali di Matematica Pura ed Applicata (1923 -), 2024, 203 : 805 - 821
  • [27] Meda Inequality for Rearrangements of the Convolution on the Heisenberg Group and Some Applications
    V. S. Guliyev
    A. Serbetci
    E. Güner
    S. Balcı
    Journal of Inequalities and Applications, 2009
  • [28] Meda Inequality for Rearrangements of the Convolution on the Heisenberg Group and Some Applications
    Guliyev, V. S.
    Serbetci, A.
    Guner, E.
    Balci, S.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [29] A CONVOLUTION INEQUALITY WITH APPLICATIONS TO FUNCTION-THEORY .2.
    ESSEN, M
    ROSSI, J
    SHEA, D
    JOURNAL D ANALYSE MATHEMATIQUE, 1993, 61 : 339 - 366
  • [30] Trudinger-Moser-type inequality with logarithmic convolution potentials
    Cingolani, Silvia
    Weth, Tobias
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (03): : 1897 - 1935