On the special form of integral convolution type inequality due to Walter and Weckesser

被引:1
|
作者
Malolepszy, Tomasz [1 ]
Matkowski, Janusz [1 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, Ul Prof Z Szafrana 4a, PL-65516 Zielona Gora, Poland
关键词
Bushell-Okrasiski inequality; Walter-Weckesser theorem; System of functional inequalities;
D O I
10.1007/s00010-018-0576-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Walter and Weckesser's result (Aequationes Math 46: 212-219, 1993), extending the Bushell-Okrasi ' nski convolution type inequality (Bushell and Okrasi ' nski in J Lond Math Soc (2) 41: 503-510, 1990), gave some general conditions on the functions k : [ 0, d). R and g : [ 0,8). R under which, for every increasing function f : [ 0, d). [ 0,8), the inequality x 0 k (x -s) g (f (s)) ds = g x 0 f (s) ds , x. (0, d), is satisfied. Applying the result on a simultaneous system of functional inequalities, we prove that if d > 1, then, in general, both k and g must be power functions.
引用
收藏
页码:9 / 19
页数:11
相关论文
共 50 条
  • [1] On the special form of integral convolution type inequality due to Walter and Weckesser
    Tomasz Małolepszy
    Janusz Matkowski
    Aequationes mathematicae, 2019, 93 : 9 - 19
  • [2] A stochastic convolution integral inequality
    Makasu, Cloud
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2020, 23 (04)
  • [3] An Equivalent Form Related to a Hilbert-Type Integral Inequality
    Rassias, Michael Th.
    Yang, Bicheng
    Raigorodskii, Andrei
    AXIOMS, 2023, 12 (07)
  • [4] A generalized form of Gruss type inequality and other integral inequalities
    Minculete, Nicusor
    Ciurdariu, Loredana
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [5] General form of Chebyshev type inequality for generalized Sugeno integral
    Boczek, Michal
    Hovana, Anton
    Hutnik, Ondrej
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2019, 115 : 1 - 12
  • [6] On the integral form of the triangle inequality
    Ciurcea, Raluca
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2008, 35 : 76 - 77
  • [7] An integral form of the isoperimetric inequality
    Farroni F.
    Greco L.
    Migliaccio L.
    Moscariello G.
    Ricerche di Matematica, 2014, 63 (Suppl 1) : 131 - 141
  • [8] AN INEQUALITY FOR AN INTEGRAL QUADRATIC FORM
    CHENG, SS
    LU, TT
    APPLIED MATHEMATICS LETTERS, 1995, 8 (02) : 81 - 84
  • [9] Inequality for an integral quadratic form
    Cheng, S.S.
    Lu, T.T.
    Applied Mathematics Letters, 1995, 8 (02):
  • [10] SPECIAL INTEGRAL AND A GRONWALL INEQUALITY
    HELTON, BW
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 217 (MAR) : 163 - 181