On the special form of integral convolution type inequality due to Walter and Weckesser

被引:1
|
作者
Malolepszy, Tomasz [1 ]
Matkowski, Janusz [1 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, Ul Prof Z Szafrana 4a, PL-65516 Zielona Gora, Poland
关键词
Bushell-Okrasiski inequality; Walter-Weckesser theorem; System of functional inequalities;
D O I
10.1007/s00010-018-0576-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Walter and Weckesser's result (Aequationes Math 46: 212-219, 1993), extending the Bushell-Okrasi ' nski convolution type inequality (Bushell and Okrasi ' nski in J Lond Math Soc (2) 41: 503-510, 1990), gave some general conditions on the functions k : [ 0, d). R and g : [ 0,8). R under which, for every increasing function f : [ 0, d). [ 0,8), the inequality x 0 k (x -s) g (f (s)) ds = g x 0 f (s) ds , x. (0, d), is satisfied. Applying the result on a simultaneous system of functional inequalities, we prove that if d > 1, then, in general, both k and g must be power functions.
引用
收藏
页码:9 / 19
页数:11
相关论文
共 50 条
  • [11] A generalized form of Grüss type inequality and other integral inequalities
    Nicuşor Minculete
    Loredana Ciurdariu
    Journal of Inequalities and Applications, 2014
  • [12] MIXED FORM OF HILBERT INTEGRAL INEQUALITY
    Al-Oushoush, Nizar K.
    JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 7 (06): : 13 - 18
  • [13] A NEW FORM OF HILBERT INTEGRAL INEQUALITY
    Batbold, Tserendorj
    Azar, Laith E.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (02): : 379 - 390
  • [14] A convolution type inequality for fuzzy integrals
    Roman-Flores, H.
    Flores-Franulic, A.
    Chalco-Cano, Y.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 195 (01) : 94 - 99
  • [15] A class of integral equations of convolution type
    Arabadzhyan, L. G.
    Khachatryan, A. S.
    SBORNIK MATHEMATICS, 2007, 198 (7-8) : 949 - 966
  • [16] NUMERICAL EVALUATION OF A CONVOLUTION - TYPE INTEGRAL
    SHUBERT, HA
    LIN, CC
    PROCEEDINGS OF THE IEEE, 1973, 61 (10) : 1513 - 1515
  • [17] Holder Type Inequality and Jensen Type Inequality for Choquet Integral
    Zhao, Xuan
    Zhang, Qiang
    KNOWLEDGE ENGINEERING AND MANAGEMENT, 2011, 123 : 219 - 224
  • [18] ON THE OSTROWSKI TYPE INTEGRAL INEQUALITY
    Sarikaya, M. Z.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2010, 79 (01): : 126 - 131
  • [19] On an integral inequality of the Wirtinger type
    Jaros, Jaroslav
    APPLIED MATHEMATICS LETTERS, 2011, 24 (08) : 1389 - 1392
  • [20] A refinement of the integral form of Jensen’s inequality
    László Horváth
    Journal of Inequalities and Applications, 2012