Dedicated symplectic integrators for rotation motions

被引:0
|
作者
Jacques Laskar
Timothée Vaillant
机构
[1] ASD,
[2] IMCCE-CNRS UMR8028,undefined
[3] Observatoire de Paris,undefined
[4] PSL Université,undefined
[5] Sorbonne Université,undefined
关键词
Rotation; Symplectic integrators; Rigid body; Lie algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We propose to use the properties of the Lie algebra of the angular momentum to build symplectic integrators dedicated to the Hamiltonian of the free rigid body. By introducing a dependence of the coefficients of integrators on the moments of inertia of the integrated body, we can construct symplectic dedicated integrators with fewer stages than in the general case for a splitting in three parts of the Hamiltonian. We perform numerical tests to compare the developed dedicated fourth-order integrators to the existing reference integrators for the water molecule. We also estimate analytically the accuracy of these new integrators for the set of the rigid bodies and conclude that they are more accurate than the existing ones only for very asymmetric bodies.
引用
收藏
相关论文
共 50 条
  • [21] Symplectic integrators for spin systems
    McLachlan, Robert I.
    Modin, Klas
    Verdier, Olivier
    PHYSICAL REVIEW E, 2014, 89 (06)
  • [22] Adaptive symplectic and reversible integrators
    Karasözen, B
    ERROR CONTROL AND ADAPTIVITY IN SCIENTIFIC COMPUTING, 1999, 536 : 191 - 220
  • [23] Physics of symplectic integrators: Perihelion advances and symplectic corrector algorithms
    Chin, Siu A.
    PHYSICAL REVIEW E, 2007, 75 (03):
  • [24] The role of symplectic integrators in optimal control
    Chyba, Monique
    Hairer, Ernst
    Vilmart, Gilles
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2009, 30 (04): : 367 - 382
  • [25] ENERGY CONSERVING, LIOUVILLE, AND SYMPLECTIC INTEGRATORS
    OKUNBOR, DI
    JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 120 (02) : 375 - 378
  • [26] A fundamental theorem on the structure of symplectic integrators
    Chin, Siu A.
    PHYSICS LETTERS A, 2006, 354 (5-6) : 373 - 376
  • [27] Symplectic integrators for the matrix Hill equation
    Bader, Philipp
    Blanes, Sergio
    Ponsoda, Enrique
    Seydaoglu, Muaz
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 316 : 47 - 59
  • [28] SYMPLECTIC INTEGRATORS FOR INDEX 1 CONSTRAINTS
    McLachlan, Robert I.
    Modin, Klas
    Verdier, Olivier
    Wilkins, Matt
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05): : A2150 - A2162
  • [29] BUTCHERS SIMPLIFYING ASSUMPTION FOR SYMPLECTIC INTEGRATORS
    SAITO, S
    SUGIURA, H
    MITSUI, T
    BIT, 1992, 32 (02): : 345 - 349
  • [30] Symplectic integrators with adaptive time steps
    Richardson, A. S.
    Finn, J. M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (01)