ENERGY CONSERVING, LIOUVILLE, AND SYMPLECTIC INTEGRATORS

被引:11
|
作者
OKUNBOR, DI
机构
[1] Department of Computer Science, University of Missouri-Rolla, Rolla
关键词
D O I
10.1006/jcph.1995.1172
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we construct an integrator that converves volume in phase space. We compare the results obtained using this method and a symplectic integrator. The results of our experiments do not reveal any superiority of the symplectic over strictly volume-preserving integrators. We also investigate the effect of numerically conserving energy in a numerical process by rescaling velocities to keep energy constant at every step. Our results for Henon-Heiles problem show that keeping energy constant in this way destroys ergodicity and forces the solution onto a periodic orbit. (C) 1995 Academic Press. Inc.
引用
收藏
页码:375 / 378
页数:4
相关论文
共 50 条
  • [1] MOMENTUM CONSERVING SYMPLECTIC INTEGRATORS
    REICH, S
    PHYSICA D-NONLINEAR PHENOMENA, 1994, 76 (04) : 375 - 383
  • [2] Energy preserving symplectic integrators
    Karkowski, J.
    JOURNAL OF NUMERICAL MATHEMATICS, 2011, 19 (03) : 215 - 224
  • [3] ENERGY CONSERVING NONHOLONOMIC INTEGRATORS
    Cortes, Jorge
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, : 189 - 199
  • [4] Symplectic integrators
    Henrard, J
    ANALYSIS AND MODELLING OF DISCRETE DYNAMICAL SYSTEMS, 1998, 1 : 133 - 145
  • [5] Symplectic-energy-momentum preserving variational integrators
    Kane, C
    Marsden, JE
    Ortiz, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (07) : 3353 - 3371
  • [6] Kinetic energy conserving integrators for Gaussian thermostatted SLLOD
    Zhang, F
    Searles, DJ
    Evans, DJ
    Hansen, JSD
    Isbister, DJ
    JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (01): : 18 - 26
  • [7] THE ACCURACY OF SYMPLECTIC INTEGRATORS
    MCLACHLAN, RI
    ATELA, P
    NONLINEARITY, 1992, 5 (02) : 541 - 562
  • [8] Symplectic integrators revisited
    Stuchi, TJ
    BRAZILIAN JOURNAL OF PHYSICS, 2002, 32 (04) : 958 - 979
  • [9] Collective symplectic integrators
    McLachlan, Robert I.
    Modin, Klas
    Verdier, Olivier
    NONLINEARITY, 2014, 27 (06) : 1525 - 1542
  • [10] On correctors of symplectic integrators
    Wu, X
    Huang, TY
    Wan, XS
    CHINESE ASTRONOMY AND ASTROPHYSICS, 2003, 27 (01) : 114 - 125