In this paper, we construct an integrator that converves volume in phase space. We compare the results obtained using this method and a symplectic integrator. The results of our experiments do not reveal any superiority of the symplectic over strictly volume-preserving integrators. We also investigate the effect of numerically conserving energy in a numerical process by rescaling velocities to keep energy constant at every step. Our results for Henon-Heiles problem show that keeping energy constant in this way destroys ergodicity and forces the solution onto a periodic orbit. (C) 1995 Academic Press. Inc.