ENERGY CONSERVING, LIOUVILLE, AND SYMPLECTIC INTEGRATORS

被引:11
|
作者
OKUNBOR, DI
机构
[1] Department of Computer Science, University of Missouri-Rolla, Rolla
关键词
D O I
10.1006/jcph.1995.1172
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we construct an integrator that converves volume in phase space. We compare the results obtained using this method and a symplectic integrator. The results of our experiments do not reveal any superiority of the symplectic over strictly volume-preserving integrators. We also investigate the effect of numerically conserving energy in a numerical process by rescaling velocities to keep energy constant at every step. Our results for Henon-Heiles problem show that keeping energy constant in this way destroys ergodicity and forces the solution onto a periodic orbit. (C) 1995 Academic Press. Inc.
引用
收藏
页码:375 / 378
页数:4
相关论文
共 50 条
  • [21] On the nonlinear stability of symplectic integrators
    McLachlan, RI
    Perlmutter, M
    Quispel, GRW
    BIT NUMERICAL MATHEMATICS, 2004, 44 (01) : 99 - 117
  • [22] On the Nonlinear Stability of Symplectic Integrators
    Robert I. McLachlan
    Matthew Perlmutter
    G. R. W. Quispel
    BIT Numerical Mathematics, 2004, 44 : 99 - 117
  • [23] Symplectic integrators for spin systems
    McLachlan, Robert I.
    Modin, Klas
    Verdier, Olivier
    PHYSICAL REVIEW E, 2014, 89 (06)
  • [24] Adaptive symplectic and reversible integrators
    Karasözen, B
    ERROR CONTROL AND ADAPTIVITY IN SCIENTIFIC COMPUTING, 1999, 536 : 191 - 220
  • [25] Automatic energy-momentum conserving time integrators for hyperelastic waves
    Ramabathiran, Amuthan Arunkumar
    Gopalakrishnan, S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (18) : 4700 - 4711
  • [26] Physics of symplectic integrators: Perihelion advances and symplectic corrector algorithms
    Chin, Siu A.
    PHYSICAL REVIEW E, 2007, 75 (03):
  • [27] The role of symplectic integrators in optimal control
    Chyba, Monique
    Hairer, Ernst
    Vilmart, Gilles
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2009, 30 (04): : 367 - 382
  • [28] A fundamental theorem on the structure of symplectic integrators
    Chin, Siu A.
    PHYSICS LETTERS A, 2006, 354 (5-6) : 373 - 376
  • [29] Symplectic integrators for the matrix Hill equation
    Bader, Philipp
    Blanes, Sergio
    Ponsoda, Enrique
    Seydaoglu, Muaz
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 316 : 47 - 59
  • [30] SYMPLECTIC INTEGRATORS FOR INDEX 1 CONSTRAINTS
    McLachlan, Robert I.
    Modin, Klas
    Verdier, Olivier
    Wilkins, Matt
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05): : A2150 - A2162