ENERGY CONSERVING, LIOUVILLE, AND SYMPLECTIC INTEGRATORS

被引:11
|
作者
OKUNBOR, DI
机构
[1] Department of Computer Science, University of Missouri-Rolla, Rolla
关键词
D O I
10.1006/jcph.1995.1172
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we construct an integrator that converves volume in phase space. We compare the results obtained using this method and a symplectic integrator. The results of our experiments do not reveal any superiority of the symplectic over strictly volume-preserving integrators. We also investigate the effect of numerically conserving energy in a numerical process by rescaling velocities to keep energy constant at every step. Our results for Henon-Heiles problem show that keeping energy constant in this way destroys ergodicity and forces the solution onto a periodic orbit. (C) 1995 Academic Press. Inc.
引用
收藏
页码:375 / 378
页数:4
相关论文
共 50 条
  • [31] BUTCHERS SIMPLIFYING ASSUMPTION FOR SYMPLECTIC INTEGRATORS
    SAITO, S
    SUGIURA, H
    MITSUI, T
    BIT, 1992, 32 (02): : 345 - 349
  • [32] Symplectic integrators with adaptive time steps
    Richardson, A. S.
    Finn, J. M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (01)
  • [33] Dedicated symplectic integrators for rotation motions
    Laskar, Jacques
    Vaillant, Timothee
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2019, 131 (03):
  • [34] Symplectic Integrators: Rotations and Roundoff Errors
    Jean-Marc Petit
    Celestial Mechanics and Dynamical Astronomy, 1998, 70 : 1 - 21
  • [35] Symplectic integrators for the multichannel schroedinger equation
    Manolopoulos, David E.
    Gray, Stephen K.
    Journal of Chemical Physics, 1995, 102 (23):
  • [36] A CLASS OF EXPLICIT RATIONAL SYMPLECTIC INTEGRATORS
    Fang, Yonglei
    Li, Qinghong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2012, 2 (02): : 161 - 171
  • [37] Dedicated symplectic integrators for rotation motions
    Jacques Laskar
    Timothée Vaillant
    Celestial Mechanics and Dynamical Astronomy, 2019, 131
  • [38] Symplectic integrators for the multilevel Redfield equation
    Kalyanaraman, C
    Evans, DG
    CHEMICAL PHYSICS LETTERS, 2000, 324 (5-6) : 459 - 465
  • [39] THE USE OF SYMPLECTIC TIME INTEGRATORS IN HYDROINFORMATICS
    Violeau, D.
    Peyrard, C.
    Dombre, E.
    PROCEEDINGS OF THE 36TH IAHR WORLD CONGRESS: DELTAS OF THE FUTURE AND WHAT HAPPENS UPSTREAM, 2015, : 3424 - 3434
  • [40] SYMPLECTIC INTEGRATORS AND THEIR APPLICATION TO DYNAMICAL ASTRONOMY
    Kinoshita, Hiroshi
    Yoshida, Haruo
    Nakai, Hiroshi
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1990, 50 (01): : 59 - 71