Dedicated symplectic integrators for rotation motions

被引:0
|
作者
Jacques Laskar
Timothée Vaillant
机构
[1] ASD,
[2] IMCCE-CNRS UMR8028,undefined
[3] Observatoire de Paris,undefined
[4] PSL Université,undefined
[5] Sorbonne Université,undefined
关键词
Rotation; Symplectic integrators; Rigid body; Lie algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We propose to use the properties of the Lie algebra of the angular momentum to build symplectic integrators dedicated to the Hamiltonian of the free rigid body. By introducing a dependence of the coefficients of integrators on the moments of inertia of the integrated body, we can construct symplectic dedicated integrators with fewer stages than in the general case for a splitting in three parts of the Hamiltonian. We perform numerical tests to compare the developed dedicated fourth-order integrators to the existing reference integrators for the water molecule. We also estimate analytically the accuracy of these new integrators for the set of the rigid bodies and conclude that they are more accurate than the existing ones only for very asymmetric bodies.
引用
收藏
相关论文
共 50 条
  • [1] Dedicated symplectic integrators for rotation motions
    Laskar, Jacques
    Vaillant, Timothee
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2019, 131 (03):
  • [2] Symplectic integrators
    Henrard, J
    ANALYSIS AND MODELLING OF DISCRETE DYNAMICAL SYSTEMS, 1998, 1 : 133 - 145
  • [3] Forward symplectic integrators and the long-time phase error in periodic motions
    Scuro, SR
    Chin, SA
    PHYSICAL REVIEW E, 2005, 71 (05):
  • [4] THE ACCURACY OF SYMPLECTIC INTEGRATORS
    MCLACHLAN, RI
    ATELA, P
    NONLINEARITY, 1992, 5 (02) : 541 - 562
  • [5] Symplectic integrators revisited
    Stuchi, TJ
    BRAZILIAN JOURNAL OF PHYSICS, 2002, 32 (04) : 958 - 979
  • [6] Collective symplectic integrators
    McLachlan, Robert I.
    Modin, Klas
    Verdier, Olivier
    NONLINEARITY, 2014, 27 (06) : 1525 - 1542
  • [7] On correctors of symplectic integrators
    Wu, X
    Huang, TY
    Wan, XS
    CHINESE ASTRONOMY AND ASTROPHYSICS, 2003, 27 (01) : 114 - 125
  • [8] Symplectic integrators: An introduction
    Donnelly, D
    Rogers, E
    AMERICAN JOURNAL OF PHYSICS, 2005, 73 (10) : 938 - 945
  • [9] Extrapolation of symplectic integrators
    Blanes, S
    Casas, F
    Ros, J
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1999, 75 (02): : 149 - 161
  • [10] Extrapolation of symplectic Integrators
    S. Blanes
    F. Casas
    J. Ros
    Celestial Mechanics and Dynamical Astronomy, 1999, 75 : 149 - 161