Dedicated symplectic integrators for rotation motions

被引:0
|
作者
Jacques Laskar
Timothée Vaillant
机构
[1] ASD,
[2] IMCCE-CNRS UMR8028,undefined
[3] Observatoire de Paris,undefined
[4] PSL Université,undefined
[5] Sorbonne Université,undefined
关键词
Rotation; Symplectic integrators; Rigid body; Lie algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We propose to use the properties of the Lie algebra of the angular momentum to build symplectic integrators dedicated to the Hamiltonian of the free rigid body. By introducing a dependence of the coefficients of integrators on the moments of inertia of the integrated body, we can construct symplectic dedicated integrators with fewer stages than in the general case for a splitting in three parts of the Hamiltonian. We perform numerical tests to compare the developed dedicated fourth-order integrators to the existing reference integrators for the water molecule. We also estimate analytically the accuracy of these new integrators for the set of the rigid bodies and conclude that they are more accurate than the existing ones only for very asymmetric bodies.
引用
收藏
相关论文
共 50 条
  • [31] Symplectic Integrators: Rotations and Roundoff Errors
    Jean-Marc Petit
    Celestial Mechanics and Dynamical Astronomy, 1998, 70 : 1 - 21
  • [32] Symplectic integrators for the multichannel schroedinger equation
    Manolopoulos, David E.
    Gray, Stephen K.
    Journal of Chemical Physics, 1995, 102 (23):
  • [33] A CLASS OF EXPLICIT RATIONAL SYMPLECTIC INTEGRATORS
    Fang, Yonglei
    Li, Qinghong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2012, 2 (02): : 161 - 171
  • [34] Symplectic integrators for the multilevel Redfield equation
    Kalyanaraman, C
    Evans, DG
    CHEMICAL PHYSICS LETTERS, 2000, 324 (5-6) : 459 - 465
  • [35] THE USE OF SYMPLECTIC TIME INTEGRATORS IN HYDROINFORMATICS
    Violeau, D.
    Peyrard, C.
    Dombre, E.
    PROCEEDINGS OF THE 36TH IAHR WORLD CONGRESS: DELTAS OF THE FUTURE AND WHAT HAPPENS UPSTREAM, 2015, : 3424 - 3434
  • [36] SYMPLECTIC INTEGRATORS AND THEIR APPLICATION TO DYNAMICAL ASTRONOMY
    Kinoshita, Hiroshi
    Yoshida, Haruo
    Nakai, Hiroshi
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1990, 50 (01): : 59 - 71
  • [37] Symplectic integrators with complex time steps
    Chambers, JE
    ASTRONOMICAL JOURNAL, 2003, 126 (02): : 1119 - 1126
  • [38] Symplectic integrators for classical spin systems
    Steinigeweg, Robin
    Schmidt, Heinz-Juergen
    COMPUTER PHYSICS COMMUNICATIONS, 2006, 174 (11) : 853 - 861
  • [39] Stable symplectic integrators for power systems
    Okunbor, D
    Akinjide, E
    COMPUTATIONAL SCIENCE-ICCS 2002, PT I, PROCEEDINGS, 2002, 2329 : 1030 - 1039
  • [40] Tuning Symplectic Integrators is Easy and Worthwhile
    McLachlan, Robert I.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2022, 31 (03) : 987 - 996