Dedicated symplectic integrators for rotation motions

被引:0
|
作者
Jacques Laskar
Timothée Vaillant
机构
[1] ASD,
[2] IMCCE-CNRS UMR8028,undefined
[3] Observatoire de Paris,undefined
[4] PSL Université,undefined
[5] Sorbonne Université,undefined
关键词
Rotation; Symplectic integrators; Rigid body; Lie algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We propose to use the properties of the Lie algebra of the angular momentum to build symplectic integrators dedicated to the Hamiltonian of the free rigid body. By introducing a dependence of the coefficients of integrators on the moments of inertia of the integrated body, we can construct symplectic dedicated integrators with fewer stages than in the general case for a splitting in three parts of the Hamiltonian. We perform numerical tests to compare the developed dedicated fourth-order integrators to the existing reference integrators for the water molecule. We also estimate analytically the accuracy of these new integrators for the set of the rigid bodies and conclude that they are more accurate than the existing ones only for very asymmetric bodies.
引用
收藏
相关论文
共 50 条
  • [41] A COMPARISON OF THE SYMPLECTIC AND OTHER NUMERICAL INTEGRATORS
    BROUCKE, RA
    STOCHASTIC PROCESSES IN ASTROPHYSICS, 1993, 706 : 126 - 147
  • [42] Symplectic integrators: Rotations and roundoff errors
    Petit, JM
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1998, 70 (01): : 1 - 21
  • [43] Hybrid symplectic integrators for planetary dynamics
    Rein, Hanno
    Hernandez, David M.
    Tamayo, Daniel
    Brown, Garett
    Eckels, Emily
    Holmes, Emma
    Lau, Michelle
    Leblanc, Rejean
    Silburt, Ari
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 485 (04) : 5490 - 5497
  • [44] Existence of formal integrals of symplectic integrators
    Liao, XH
    Liu, L
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1995, 63 (01): : 113 - 123
  • [46] Symplectic integrators for the numerical solution of the Schrodinger equation
    Kalogiratou, Z
    Monovasilis, T
    Simos, TE
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (01) : 83 - 92
  • [47] Global modified Hamiltonian for constrained symplectic integrators
    Ernst Hairer
    Numerische Mathematik, 2003, 95 : 325 - 336
  • [48] ACCURATE SYMPLECTIC INTEGRATORS VIA RANDOM SAMPLING
    HOOVER, WG
    KUM, O
    OWENS, NE
    JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (04): : 1530 - 1532
  • [49] Holomorphic potentials, symplectic integrators and CMC surfaces
    Lerner, D
    Sterling, I
    ELLIPTIC AND PARABOLIC METHODS IN GEOMETRY, 1996, : 73 - 90
  • [50] The applicability of constrained symplectic integrators in general relativity
    Frauendiener, Joerg
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (38)