Dispersive Estimates of Solutions to the Schrödinger Equation

被引:0
|
作者
Georgi Vodev
机构
[1] Université de Nantes,Département de Mathématiques, UMR 6629 du CNRS
来源
Annales Henri Poincaré | 2005年 / 6卷
关键词
Dynamical System; Field Theory; Elementary Particle; Quantum Field Theory; Mathematical Method;
D O I
暂无
中图分类号
学科分类号
摘要
We prove time decay L1 → L∞ estimates for the Schrödinger group eit(−Δ + V) for real-valued potentials \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V \in L^\infty ({\mathbf{R}}^3 )$$\end{document} satisfying V (x) = O (|x|−δ),  |x| ≫ 1, with δ > 5/2.
引用
收藏
页码:1179 / 1196
页数:17
相关论文
共 50 条
  • [41] On the dynamics of the generalized unstable nonlinear Schrödinger equation in dispersive media
    Badshah, Fazal
    Tariq, Kalim U.
    Aslam, Muhammad
    Ma, Wen-Xiu
    Kazmi, S. Mohsan Raza
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (12)
  • [42] On the dynamics of the generalized unstable nonlinear Schrödinger equation in dispersive media
    Fazal Badshah
    Kalim U. Tariq
    Muhammad Aslam
    Wen-Xiu Ma
    S. Mohsan Raza Kazmi
    Optical and Quantum Electronics, 2023, 55
  • [43] Exact solutions of the Schrödinger equation for zero energy
    J. Pade
    The European Physical Journal D, 2009, 53 : 41 - 50
  • [44] Singular solutions of the nonlocal nonlinear Schrödinger equation
    Bingwen Lin
    The European Physical Journal Plus, 137
  • [45] A new class of exact solutions of the Schrödinger equation
    E. E. Perepelkin
    B. I. Sadovnikov
    N. G. Inozemtseva
    A. A. Tarelkin
    Continuum Mechanics and Thermodynamics, 2019, 31 : 639 - 667
  • [46] Ground State Solutions for a Quasilinear Schrödinger Equation
    Jian Zhang
    Xiaoyan Lin
    Xianhua Tang
    Mediterranean Journal of Mathematics, 2017, 14
  • [47] Multiple soliton solutions for a quasilinear Schrödinger equation
    Jiayin Liu
    Duchao Liu
    Indian Journal of Pure and Applied Mathematics, 2017, 48 : 75 - 90
  • [48] Multiplicity of positive solutions of a nonlinear Schrödinger equation
    Yanheng Ding
    Kazunaga Tanaka
    manuscripta mathematica, 2003, 112 : 109 - 135
  • [49] On Multiwave Solutions of One Nonlinear Schrödinger Equation
    A. N. Volobuev
    Differential Equations, 2021, 57 : 711 - 717
  • [50] Spectral solutions for the Schrödinger equation with a regular singularity
    Mohile, Pushkar
    Ahmed, Ayaz
    Vishnu, T. R.
    Ramadevi, Pichai
    SCIPOST PHYSICS CORE, 2024, 7 (03):