Dispersive Estimates of Solutions to the Schrödinger Equation

被引:0
|
作者
Georgi Vodev
机构
[1] Université de Nantes,Département de Mathématiques, UMR 6629 du CNRS
来源
Annales Henri Poincaré | 2005年 / 6卷
关键词
Dynamical System; Field Theory; Elementary Particle; Quantum Field Theory; Mathematical Method;
D O I
暂无
中图分类号
学科分类号
摘要
We prove time decay L1 → L∞ estimates for the Schrödinger group eit(−Δ + V) for real-valued potentials \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V \in L^\infty ({\mathbf{R}}^3 )$$\end{document} satisfying V (x) = O (|x|−δ),  |x| ≫ 1, with δ > 5/2.
引用
收藏
页码:1179 / 1196
页数:17
相关论文
共 50 条
  • [31] Dispersive and Strichartz Estimates for Schrödinger Equation with One Aharonov-Bohm Solenoid in a Uniform Magnetic Field
    Wang, Haoran
    Zhang, Fang
    Zhang, Junyong
    ANNALES HENRI POINCARE, 2024,
  • [32] Aharonov-Bohm Effect and High-Velocity Estimates of Solutions to the Schrödinger Equation
    Miguel Ballesteros
    Ricardo Weder
    Communications in Mathematical Physics, 2011, 303 : 175 - 211
  • [33] Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces
    N. Burq
    P. Gérard
    N. Tzvetkov
    Inventiones mathematicae, 2005, 159 : 187 - 223
  • [34] Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary
    Matthew D. Blair
    Hart F. Smith
    Chris D. Sogge
    Mathematische Annalen, 2012, 354 : 1397 - 1430
  • [35] Maximal estimates for the Schrödinger equation with orthonormal initial data
    Neal Bez
    Sanghyuk Lee
    Shohei Nakamura
    Selecta Mathematica, 2020, 26
  • [36] Restrictions on local inhomogeneous Strichartz estimates for the Schrödinger equation
    Ahmed A. Abdelhakim
    Archiv der Mathematik, 2014, 102 : 165 - 169
  • [37] Asymptotic value distribution for solutions of the Schrödinger equation
    Breimesser S.V.
    Pearson D.B.
    Mathematical Physics, Analysis and Geometry, 2000, 3 (4) : 385 - 403
  • [38] Soliton solutions for the nonlocal nonlinear Schrödinger equation
    Xin Huang
    Liming Ling
    The European Physical Journal Plus, 131
  • [39] Kink Soliton Solutions in the Logarithmic Schrödinger Equation
    Scott, Tony C.
    Glasser, M. Lawrence
    MATHEMATICS, 2025, 13 (05)
  • [40] Dispersive decay for the energy-critical nonlinear Schrödinger equation
    Kowalski, Matthew
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 429 : 392 - 426