Dispersive Estimates of Solutions to the Schrödinger Equation

被引:0
|
作者
Georgi Vodev
机构
[1] Université de Nantes,Département de Mathématiques, UMR 6629 du CNRS
来源
Annales Henri Poincaré | 2005年 / 6卷
关键词
Dynamical System; Field Theory; Elementary Particle; Quantum Field Theory; Mathematical Method;
D O I
暂无
中图分类号
学科分类号
摘要
We prove time decay L1 → L∞ estimates for the Schrödinger group eit(−Δ + V) for real-valued potentials \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V \in L^\infty ({\mathbf{R}}^3 )$$\end{document} satisfying V (x) = O (|x|−δ),  |x| ≫ 1, with δ > 5/2.
引用
收藏
页码:1179 / 1196
页数:17
相关论文
共 50 条
  • [21] Uniqueness for solutions of the Schrödinger equation on trees
    Aingeru Fernández-Bertolin
    Philippe Jaming
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 681 - 708
  • [22] On Solutions to the Matrix Nonlinear Schrödinger Equation
    A. V. Domrin
    Computational Mathematics and Mathematical Physics, 2022, 62 : 920 - 932
  • [23] Periodic solutions of a fractional Schrödinger equation
    Wang, Jian
    Du, Zhuoran
    APPLICABLE ANALYSIS, 2024, 103 (08) : 1540 - 1551
  • [24] Exact solutions of the nonstationary Schrödinger equation
    E. P. Velicheva
    A. A. Suz'ko
    Theoretical and Mathematical Physics, 1998, 115 : 687 - 693
  • [25] Asymptotics of the Solutions of the Random Schrödinger Equation
    Guillaume Bal
    Tomasz Komorowski
    Lenya Ryzhik
    Archive for Rational Mechanics and Analysis, 2011, 200 : 613 - 664
  • [26] Novel dispersive soliton solutions to a fractional nonlinear Schrödinger equation related with ultrashort pulses
    Nursena Günhan Ay
    Emrullah Yaşar
    Pramana, 97
  • [27] Optical solitary waves solutions of the eight-order dispersive Schrödinger wave equation
    Ali, Sajjad
    Khan, Meraj Ali
    Ullah, Aman
    Aldosary, Saud Fahad
    Rahman, Mati Ur
    Ahmad, Shabir
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (07)
  • [28] Schrödinger Dispersive Estimates for a Scaling-Critical Class of Potentials
    Marius Beceanu
    Michael Goldberg
    Communications in Mathematical Physics, 2012, 314 : 471 - 481
  • [29] Positive Solutions and Estimates for the Poisson and Martin Kernels for the Time-Independent Schrödinger Equation
    Michael W. Frazier
    La Matematica, 2024, 3 (4): : 1565 - 1587
  • [30] Decay Estimates and Smoothness for Solutions of the Dispersion Managed Non-linear Schrödinger Equation
    Dirk Hundertmark
    Young-Ran Lee
    Communications in Mathematical Physics, 2009, 286 : 851 - 873