Counting Lattice Paths With Four Types of Steps

被引:0
|
作者
Maciej Dziemiańczuk
机构
[1] University of Gdańsk,Institute of Informatics
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
Enumeration of lattice paths; Generating functions; 05A15; 05C30;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to derive generating functions for the numbers of lattice paths running from (0, 0) to any (n, k) in Z×N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z} \times \mathbb{N}}$$\end{document} consisting of four types of steps: horizontal H = (1, 0), vertical V = (0, 1), diagonal D = (1, 1), and sloping L = (–1, 1). These paths generalize the well-known Delannoy paths which consist of steps H, V, and D. Several restrictions are considered. However, we mainly treat with those which will be needed to get the generating function for the numbers R(n, k) of these lattice paths whose points lie in the integer rectangle {(x,y)∈N2:0≤x≤n,0≤y≤k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{(x, y) \in \mathbb{N}^2 : 0 \leq x \leq n, 0 \leq y \leq k\}}$$\end{document}. Recurrence relation, generating functions and explicit formulas are given. We show that most of considered numbers define Riordan arrays.
引用
收藏
页码:1427 / 1452
页数:25
相关论文
共 50 条
  • [41] A Note on Counting Homomorphisms of Paths
    Eggleton, Roger B.
    Morayne, Michal
    GRAPHS AND COMBINATORICS, 2014, 30 (01) : 159 - 170
  • [42] Counting Paths and Packings in Halves
    Bjorklund, Andreas
    Husfeldt, Thore
    Kaski, Petteri
    Koivisto, Mikko
    ALGORITHMS - ESA 2009, PROCEEDINGS, 2009, 5757 : 578 - +
  • [43] A Note on Counting Homomorphisms of Paths
    Roger B. Eggleton
    Michał Morayne
    Graphs and Combinatorics, 2014, 30 : 159 - 170
  • [44] Counting elevated Schroder paths
    Nieto, JH
    AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (05): : 466 - 467
  • [45] Counting strings in Dyck paths
    Sapounakis, A.
    Tasoulas, I.
    Tsikouras, P.
    DISCRETE MATHEMATICS, 2007, 307 (23) : 2909 - 2924
  • [46] Exercising: Is counting steps enough?
    不详
    DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 2024, 149 (14) : 805 - 805
  • [47] Lattice paths with catastrophes
    Banderier, Cyril
    Wallner, Michael
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2017, 19 (01):
  • [48] Lattice of Delannoy paths
    Autebert, JM
    Latapy, M
    Schwer, SR
    DISCRETE MATHEMATICS, 2002, 258 (1-3) : 225 - 234
  • [49] WEIGHTED LATTICE PATHS
    FRAY, RD
    ROSELLE, DP
    PACIFIC JOURNAL OF MATHEMATICS, 1971, 37 (01) : 85 - &
  • [50] Lattice paths and determinants
    Aigner, M
    COMPUTATIONAL DISCRETE MATHEMATICS: ADVANCED LECTURES, 2001, 2122 : 1 - 12