A Note on Counting Homomorphisms of Paths

被引:1
|
作者
Eggleton, Roger B. [1 ]
Morayne, Michal [2 ]
机构
[1] Illinois State Univ, Dept Math, Normal, IL 61790 USA
[2] Wroclaw Univ Technol, Inst Math & Comp Sci, PL-50370 Wroclaw, Poland
关键词
Path; Homomorphism; Generating function; Catalan number; Endomorphism; ALGORITHM; NUMBER;
D O I
10.1007/s00373-012-1261-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain two identities and an explicit formula for the number of homomorphisms of a finite path into a finite path. For the number of endomorphisms of a finite path these give over-count and under-count identities yielding the closed-form formulae of Myers. We also derive finite Laurent series as generating functions which count homomorphisms of a finite path into any path, finite or infinite.
引用
收藏
页码:159 / 170
页数:12
相关论文
共 50 条
  • [1] A Note on Counting Homomorphisms of Paths
    Roger B. Eggleton
    Michał Morayne
    Graphs and Combinatorics, 2014, 30 : 159 - 170
  • [2] HOMOMORPHISMS TO ORIENTED PATHS
    HELL, P
    ZHU, XD
    DISCRETE MATHEMATICS, 1994, 132 (1-3) : 107 - 114
  • [3] Homomorphisms of random paths
    Kun, Gabor
    Tardif, Claude
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (03) : 688 - 693
  • [4] The complexity of counting graph homomorphisms
    Dyer, M
    Greenhill, C
    RANDOM STRUCTURES & ALGORITHMS, 2000, 17 (3-4) : 260 - 289
  • [5] COUNTING SUBGRAPHS VIA HOMOMORPHISMS
    Amini, Omid
    Fomin, Fedor V.
    Saurabh, Saket
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (02) : 695 - 717
  • [6] Counting Subgraphs via Homomorphisms
    Amini, Omid
    Fomin, Fedor V.
    Saurabh, Saket
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2009, 5555 : 71 - +
  • [7] Counting Homomorphisms and Partition Functions
    Grohe, Martin
    Thurley, Marc
    MODEL THEORETIC METHODS IN FINITE COMBINATORICS, 2011, 558 : 243 - +
  • [8] Counting Homomorphisms in Bipartite Graphs
    Shams, Shahab
    Ruozzi, Nicholas
    Csikvari, Peter
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 1487 - 1491
  • [9] A Note on Homomorphisms and Anti-Homomorphisms on *-Ring
    Rehman, Nadeem Ur
    Ansari, Abu Zaid
    Haetinger, Claus
    THAI JOURNAL OF MATHEMATICS, 2013, 11 (03): : 741 - 750
  • [10] A NOTE ON JUNCTURE HOMOMORPHISMS
    EVERETT, MG
    BORGATTI, SP
    SOCIAL NETWORKS, 1990, 12 (04) : 385 - 389