A Note on Counting Homomorphisms of Paths

被引:1
|
作者
Eggleton, Roger B. [1 ]
Morayne, Michal [2 ]
机构
[1] Illinois State Univ, Dept Math, Normal, IL 61790 USA
[2] Wroclaw Univ Technol, Inst Math & Comp Sci, PL-50370 Wroclaw, Poland
关键词
Path; Homomorphism; Generating function; Catalan number; Endomorphism; ALGORITHM; NUMBER;
D O I
10.1007/s00373-012-1261-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain two identities and an explicit formula for the number of homomorphisms of a finite path into a finite path. For the number of endomorphisms of a finite path these give over-count and under-count identities yielding the closed-form formulae of Myers. We also derive finite Laurent series as generating functions which count homomorphisms of a finite path into any path, finite or infinite.
引用
收藏
页码:159 / 170
页数:12
相关论文
共 50 条
  • [21] Counting Homomorphisms to Trees Modulo a Prime
    Goebel, Andreas
    Lagodzinski, J. A. Gregor
    Seidel, Karen
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2021, 13 (03)
  • [22] Parameterized Counting of Partially Injective Homomorphisms
    Roth, Marc
    ALGORITHMICA, 2021, 83 (06) : 1829 - 1860
  • [23] THE COMPLEXITY OF COUNTING SURJECTIVE HOMOMORPHISMS AND COMPACTIONS
    Focke, Jacob
    Goldberg, Leslie Ann
    Zivny, Stanislav
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (02) : 1006 - 1043
  • [24] On counting homomorphisms to directed acyclic graphs
    Dyer, Martin
    Goldberg, Leslie Ann
    Paterson, Mike
    JOURNAL OF THE ACM, 2007, 54 (06)
  • [25] A note on the representation of lattice homomorphisms
    Victoria A. Tamaeva
    Batradz B. Tasoev
    Positivity, 2024, 28 (5)
  • [26] A note on homomorphisms of Kneser hypergraphs
    Bonomo-Braberman, Flavia
    Dourado, Mitre C.
    Valencia-Pabon, Mario
    Vera, Juan C.
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 366
  • [27] A NOTE ON HOMOMORPHISMS OF OPERATOR ALGEBRAS
    PORTA, H
    COLLOQUIUM MATHEMATICUM, 1969, 20 (01) : 117 - &
  • [28] A note on homomorphisms of matrix semigroup
    Omladic, Matjaz
    Kuzma, Bojan
    ARS MATHEMATICA CONTEMPORANEA, 2013, 6 (02) : 247 - 252
  • [29] A note on continuous behavior homomorphisms
    Fuhrmann, PA
    SYSTEMS & CONTROL LETTERS, 2003, 49 (05) : 359 - 363
  • [30] Counting paths in digraphs
    Seymour, Paul
    Sullivan, Blair D.
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (03) : 961 - 975