Counting Lattice Paths With Four Types of Steps

被引:0
|
作者
Maciej Dziemiańczuk
机构
[1] University of Gdańsk,Institute of Informatics
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
Enumeration of lattice paths; Generating functions; 05A15; 05C30;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to derive generating functions for the numbers of lattice paths running from (0, 0) to any (n, k) in Z×N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z} \times \mathbb{N}}$$\end{document} consisting of four types of steps: horizontal H = (1, 0), vertical V = (0, 1), diagonal D = (1, 1), and sloping L = (–1, 1). These paths generalize the well-known Delannoy paths which consist of steps H, V, and D. Several restrictions are considered. However, we mainly treat with those which will be needed to get the generating function for the numbers R(n, k) of these lattice paths whose points lie in the integer rectangle {(x,y)∈N2:0≤x≤n,0≤y≤k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{(x, y) \in \mathbb{N}^2 : 0 \leq x \leq n, 0 \leq y \leq k\}}$$\end{document}. Recurrence relation, generating functions and explicit formulas are given. We show that most of considered numbers define Riordan arrays.
引用
收藏
页码:1427 / 1452
页数:25
相关论文
共 50 条
  • [31] Counting steps
    Johnson, Jeffrey S.
    NATURE SYNTHESIS, 2023, 2 (01): : 6 - 8
  • [32] Counting Lattice Paths by Using Difference Equations with Non-constant Coefficients
    Chandragiri, Sreelatha
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2023, 44 : 55 - 70
  • [34] Counting paths in digraphs
    Seymour, Paul
    Sullivan, Blair D.
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (03) : 961 - 975
  • [35] Hereditary angioedema with normal C1 inhibitor: Four types and counting
    Zuraw, Bruce L.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2018, 141 (03) : 884 - 885
  • [36] COUNTING MONOCHROMATIC PATHS AND STARS
    CZERNIAKIEWICZ, A
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (05): : A507 - A508
  • [37] Counting humps in Motzkin paths
    Ding, Yun
    Du, Rosena R. X.
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (1-2) : 187 - 191
  • [38] Counting paths on a chessboard with a barrier
    Gaudenzi, Marcellino
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2010, 4 (03) : 432 - 440
  • [39] Counting paths on the slit plane
    Bousquet-Mélou, M
    Schaeffer, G
    MATHEMATICS AND COMPUTER SCIENCE: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2000, : 101 - 112
  • [40] Counting paths with Schur transitions
    Diaz, Pablo
    Kemp, Garreth
    Veliz-Osorio, Alvaro
    NUCLEAR PHYSICS B, 2016, 911 : 295 - 317