共 50 条
Counting Lattice Paths With Four Types of Steps
被引:0
|作者:
Maciej Dziemiańczuk
机构:
[1] University of Gdańsk,Institute of Informatics
来源:
关键词:
Enumeration of lattice paths;
Generating functions;
05A15;
05C30;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The main purpose of this paper is to derive generating functions for the numbers of lattice paths running from (0, 0) to any (n, k) in Z×N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{Z} \times \mathbb{N}}$$\end{document} consisting of four types of steps: horizontal H = (1, 0), vertical V = (0, 1), diagonal D = (1, 1), and sloping L = (–1, 1). These paths generalize the well-known Delannoy paths which consist of steps H, V, and D. Several restrictions are considered. However, we mainly treat with those which will be needed to get the generating function for the numbers R(n, k) of these lattice paths whose points lie in the integer rectangle {(x,y)∈N2:0≤x≤n,0≤y≤k}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\{(x, y) \in \mathbb{N}^2 : 0 \leq x \leq n, 0 \leq y \leq k\}}$$\end{document}. Recurrence relation, generating functions and explicit formulas are given. We show that most of considered numbers define Riordan arrays.
引用
收藏
页码:1427 / 1452
页数:25
相关论文