Bayesian Analysis of Multivariate Probit Models with Surrogate Outcome Data

被引:0
|
作者
Wai-Yin Poon
Hai-Bin Wang
机构
[1] The Chinese University of Hong Kong,Department of Statistics
[2] Xiamen University,School of Mathematical Sciences
来源
Psychometrika | 2010年 / 75卷
关键词
errors-in-variables; Gibbs sampler; Metropolis–Hastings algorithm; misclassification; multivariate probit model; parameter expansion; surrogate variable;
D O I
暂无
中图分类号
学科分类号
摘要
A new class of parametric models that generalize the multivariate probit model and the errors-in-variables model is developed to model and analyze ordinal data. A general model structure is assumed to accommodate the information that is obtained via surrogate variables. A hybrid Gibbs sampler is developed to estimate the model parameters. To obtain a rapidly converged algorithm, the parameter expansion technique is applied to the correlation structure of the multivariate probit models. The proposed model and method of analysis are demonstrated with real data examples and simulation studies.
引用
收藏
页码:498 / 520
页数:22
相关论文
共 50 条
  • [21] Marginal effects in multivariate probit models
    Mullahy, John
    [J]. EMPIRICAL ECONOMICS, 2017, 52 (02) : 447 - 461
  • [22] Bayesian Graphical Models for Multivariate Functional Data
    Zhu, Hongxiao
    Strawn, Nate
    Dunson, David B.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [23] Marginal effects in multivariate probit models
    John Mullahy
    [J]. Empirical Economics, 2017, 52 : 447 - 461
  • [24] TESTING FOR DEPENDENCE IN MULTIVARIATE PROBIT MODELS
    KIEFER, NM
    [J]. BIOMETRIKA, 1982, 69 (01) : 161 - 166
  • [25] Bayesian inference for multivariate probit model with latent envelope
    Lee, Kwangmin
    Park, Yeonhee
    [J]. BIOMETRICS, 2024, 80 (03)
  • [26] A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Duncan K. H. Fong
    Sunghoon Kim
    Zhe Chen
    Wayne S. DeSarbo
    [J]. Psychometrika, 2016, 81 : 161 - 183
  • [27] A MULTIVARIATE GENERALIZATION OF PROBIT ANALYSIS
    KOLAKOWSKI, D
    BOCK, RD
    [J]. BIOMETRICS, 1981, 37 (03) : 541 - 551
  • [28] The analysis of bayesian probit regression of binary and polychotomous response data
    Department of Mathematics, Teachers' Training Faculty Tehran South Branch, Islamic Azad University, Tehran, Iran
    [J]. Int. J. Eng. Trans. B Applic., 2007, 3 (237-248):
  • [29] Prediction of patient-reported outcome measures via multivariate ordered probit models
    Conigliani, Caterina
    Manca, Andrea
    Tancredi, Andrea
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2015, 178 (03) : 567 - 591
  • [30] A BAYESIAN MULTINOMIAL PROBIT MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Fong, Duncan K. H.
    Kim, Sunghoon
    Chen, Zhe
    DeSarbo, Wayne S.
    [J]. PSYCHOMETRIKA, 2016, 81 (01) : 161 - 183