graphical model;
functional data analysis;
gaussian process;
model uncertainty;
stochastic search;
SELECTION;
CONVERGENCE;
INSIGHTS;
D O I:
暂无
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Graphical models express conditional independence relationships among variables. Although methods for vector-valued data are well established, functional data graphical models remain underdeveloped. By functional data, we refer to data that are realizations of random functions varying over a continuum (e.g., images, signals). We introduce a notion of conditional independence between random functions, and construct a framework for Bayesian inference of undirected, decomposable graphs in the multivariate functional data context. This framework is based on extending Markov distributions and hyper Markov laws from random variables to random processes, providing a principled alternative to naive application of multivariate methods to discretized functional data. Markov properties facilitate the composition of likelihoods and priors according to the decomposition of a graph. Our focus is on Gaussian process graphical models using orthogonal basis expansions. We propose a hyper-inverse-Wishart-process prior for the covariance kernels of the infinite co-efficient sequences of the basis expansion, and establish its existence and uniqueness. We also prove the strong hyper Markov property and the conjugacy of this prior under a finite rank condition of the prior kernel parameter. Stochastic search Markov chain Monte Carlo algorithms are developed for posterior inference, assessed through simulations, and applied to a study of brain activity and alcoholism.
机构:
Univ Washington, Dept Stat, Seattle, WA 98195 USA
Univ Washington, Dept Biobehav Nursing Syst, Seattle, WA 98195 USA
Univ Washington, Dept Hlth Syst, Seattle, WA 98195 USA
Univ Washington, Ctr Stat & Social Sci, Seattle, WA 98195 USAUniv Washington, Dept Stat, Seattle, WA 98195 USA
Dobra, Adrian
Lenkoski, Alex
论文数: 0引用数: 0
h-index: 0
机构:
Heidelberg Univ, Inst Angew Math, D-69115 Heidelberg, GermanyUniv Washington, Dept Stat, Seattle, WA 98195 USA
Lenkoski, Alex
Rodriguez, Abel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USAUniv Washington, Dept Stat, Seattle, WA 98195 USA
机构:
Merck & Co Inc, Merck Res Lab, 351 North Sumneytown Pike, N Wales, PA 19454 USAMerck & Co Inc, Merck Res Lab, 351 North Sumneytown Pike, N Wales, PA 19454 USA
Li, Kan
Luo, Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Med Ctr, Dept Biostat & Bioinformat, 2400 Pratt St,7040 North Pavil, Durham, NC 27705 USAMerck & Co Inc, Merck Res Lab, 351 North Sumneytown Pike, N Wales, PA 19454 USA
机构:
Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
ZAPATA, J.
OH, S. Y.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
OH, S. Y.
PETERSEN, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
机构:
Univ Calif Los Angeles, Dept Biostat, 650 Charles E Young Dr South, Los Angeles, CA 90095 USAJohns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, 615 N Wolfe St, Baltimore, MD 21205 USA