Bayesian Analysis of Multivariate Probit Models with Surrogate Outcome Data

被引:0
|
作者
Wai-Yin Poon
Hai-Bin Wang
机构
[1] The Chinese University of Hong Kong,Department of Statistics
[2] Xiamen University,School of Mathematical Sciences
来源
Psychometrika | 2010年 / 75卷
关键词
errors-in-variables; Gibbs sampler; Metropolis–Hastings algorithm; misclassification; multivariate probit model; parameter expansion; surrogate variable;
D O I
暂无
中图分类号
学科分类号
摘要
A new class of parametric models that generalize the multivariate probit model and the errors-in-variables model is developed to model and analyze ordinal data. A general model structure is assumed to accommodate the information that is obtained via surrogate variables. A hybrid Gibbs sampler is developed to estimate the model parameters. To obtain a rapidly converged algorithm, the parameter expansion technique is applied to the correlation structure of the multivariate probit models. The proposed model and method of analysis are demonstrated with real data examples and simulation studies.
引用
收藏
页码:498 / 520
页数:22
相关论文
共 50 条
  • [31] THE ANALYSIS OF BAYESIAN PROBIT REGRESSION OF BINARY AND POLYCHOTOMOUS RESPONSE DATA
    Nasrollahzadeh, Shadi
    INTERNATIONAL JOURNAL OF ENGINEERING, 2007, 20 (03): : 237 - 248
  • [32] A BAYESIAN MULTINOMIAL PROBIT MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Fong, Duncan K. H.
    Kim, Sunghoon
    Chen, Zhe
    DeSarbo, Wayne S.
    PSYCHOMETRIKA, 2016, 81 (01) : 161 - 183
  • [33] Amultiple imputationmethod for incomplete correlated ordinal data using multivariate probit models
    Zhang, Xiao
    Li, Quanlin
    Cropsey, Karen
    Yang, Xiaowei
    Zhang, Kui
    Belin, Thomas
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (03) : 2360 - 2375
  • [34] Crash Injury Severity Analysis Using Bayesian Ordered Probit Models
    Xie, Yuanchang
    Zhang, Yunlong
    Liang, Faming
    JOURNAL OF TRANSPORTATION ENGINEERING, 2009, 135 (01) : 18 - 25
  • [35] Bayesian Multivariate Spatial Models for Lattice Data with INLA
    Palmi-Perales, Francisco
    Gomez-Rubio, Virgilio
    Martinez-Beneito, Miguel A.
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 98 (02): : 1 - 29
  • [36] Robust Bayesian cumulative probit linear mixed models for longitudinal ordinal data
    Lee, Kuo-Jung
    Chen, Ray-Bing
    Lee, Keunbaik
    COMPUTATIONAL STATISTICS, 2025, 40 (01) : 441 - 468
  • [37] Multivariate probit analysis of binary familial data using stochastic representations
    Deng, Yihao
    Sabo, Roy T.
    Chaganty, N. Rao
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (03) : 656 - 663
  • [38] Bayesian Causal Inference in Probit Graphical Models
    Castelletti, Federico
    Consonni, Guido
    BAYESIAN ANALYSIS, 2021, 16 (04): : 1113 - 1137
  • [39] Analysis of ordered probit model with surrogate response data and measurement error in covariates
    Roy, Surupa
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (09) : 2665 - 2678
  • [40] A Bayesian analysis of the multinomial probit model using marginal data augmentation
    Imai, K
    van Dyk, DA
    JOURNAL OF ECONOMETRICS, 2005, 124 (02) : 311 - 334