On Minimally Highly Vertex-Redundantly Rigid Graphs

被引:0
|
作者
Viktória E. Kaszanitzky
Csaba Király
机构
[1] Eötvös Loránd University,Department of Operations Research
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Vertex-redundant rigidity; Bar-joint frameworks;
D O I
暂无
中图分类号
学科分类号
摘要
A graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} is called k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{d}$$\end{document} if |V|≥k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V|\ge k+1$$\end{document} and after deleting any set of at most k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-1$$\end{document} vertices the resulting graph is rigid in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{d}$$\end{document}. A k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is called minimally k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid if the omission of an arbitrary edge results in a graph that is not k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid. B. Servatius showed that a 2-rigid graph in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} has at least 2|V|-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2|V|-1$$\end{document} edges and this bound is sharp. We extend this lower bound for arbitrary values of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} and d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} and show its sharpness for the cases where k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document} and d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} is arbitrary and where k=d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=d=3$$\end{document}. We also provide a sharp upper bound for the number of edges of minimally k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid graphs in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} for all k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}.
引用
收藏
页码:225 / 240
页数:15
相关论文
共 50 条
  • [21] CLASSIFICATION OF FINITE HIGHLY REGULAR VERTEX-COLORED GRAPHS
    Heinrich, Irene
    Schneider, Thomas
    Schweitzer, Pascal
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2025, 39 (01) : 413 - 448
  • [22] Tangle insertion invariants for pseudoknots, singular knots, and rigid vertex spatial graphs
    Henrich, Allison
    Kauffman, Louis H.
    KNOTS, LINKS, SPATIAL GRAPHS, AND ALGEBRAIC INVARIANTS, 2017, 689 : 177 - 189
  • [23] On the multihomogeneous Bézout bound on the number of embeddings of minimally rigid graphs
    Evangelos Bartzos
    Ioannis Z. Emiris
    Josef Schicho
    Applicable Algebra in Engineering, Communication and Computing, 2020, 31 : 325 - 357
  • [24] An inductive construction of minimally rigid body-hinge simple graphs
    Kobayashi, Yuki
    Higashikawa, Yuya
    Katoh, Naoki
    Kamiyama, Naoyuki
    THEORETICAL COMPUTER SCIENCE, 2014, 556 : 2 - 12
  • [25] Highly connected molecular graphs are rigid in three dimensions
    Jordan, Tibor
    INFORMATION PROCESSING LETTERS, 2012, 112 (8-9) : 356 - 359
  • [26] On the stability of distance-based formation control with minimally globally rigid graphs
    Sahebsara, Farid
    de Queiroz, Marcio
    SYSTEMS & CONTROL LETTERS, 2024, 185
  • [27] On Vertex Types of Graphs
    Pu Qiao
    Xingzhi Zhan
    Graphs and Combinatorics, 2018, 34 : 889 - 900
  • [28] Vertex rough graphs
    Mathew, Bibin
    John, Sunil Jacob
    Garg, Harish
    COMPLEX & INTELLIGENT SYSTEMS, 2020, 6 (02) : 347 - 353
  • [29] Vertex pancyclic graphs
    Randerath, B
    Schiermeyer, I
    Tewes, M
    Volkmann, L
    DISCRETE APPLIED MATHEMATICS, 2002, 120 (1-3) : 219 - 237
  • [30] On the vertex monophonic, vertex geodetic and vertex Steiner numbers of graphs
    John, J.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (10)