On Minimally Highly Vertex-Redundantly Rigid Graphs

被引:0
|
作者
Viktória E. Kaszanitzky
Csaba Király
机构
[1] Eötvös Loránd University,Department of Operations Research
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Vertex-redundant rigidity; Bar-joint frameworks;
D O I
暂无
中图分类号
学科分类号
摘要
A graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} is called k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{d}$$\end{document} if |V|≥k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V|\ge k+1$$\end{document} and after deleting any set of at most k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-1$$\end{document} vertices the resulting graph is rigid in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{d}$$\end{document}. A k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is called minimally k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid if the omission of an arbitrary edge results in a graph that is not k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid. B. Servatius showed that a 2-rigid graph in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} has at least 2|V|-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2|V|-1$$\end{document} edges and this bound is sharp. We extend this lower bound for arbitrary values of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} and d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} and show its sharpness for the cases where k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document} and d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} is arbitrary and where k=d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=d=3$$\end{document}. We also provide a sharp upper bound for the number of edges of minimally k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-rigid graphs in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} for all k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}.
引用
收藏
页码:225 / 240
页数:15
相关论文
共 50 条
  • [31] On α-Vertex Choosability of Graphs
    Soorya, P.
    Germina, K. Augusthy
    Sudev, Naduvath
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2021, 44 (04): : 343 - 346
  • [32] Vertex sequences in graphs
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    DISCRETE MATHEMATICS LETTERS, 2021, 6 : 19 - 31
  • [33] VERTEX CYCLIC GRAPHS
    ROBERTS, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A260 - A260
  • [34] Vertex rough graphs
    Bibin Mathew
    Sunil Jacob John
    Harish Garg
    Complex & Intelligent Systems, 2020, 6 : 347 - 353
  • [35] On Vertex Types of Graphs
    Qiao, Pu
    Zhan, Xingzhi
    GRAPHS AND COMBINATORICS, 2018, 34 (05) : 889 - 900
  • [36] A Henneberg-based algorithm for generating tree-decomposable minimally rigid graphs
    Hidalgo, Marta R.
    Joan-Arinyo, Robert
    JOURNAL OF SYMBOLIC COMPUTATION, 2017, 79 : 232 - 248
  • [37] AN INDUCTIVE CONSTRUCTION OF MINIMALLY RIGID PANEL-HINGE GRAPHS AND APPLICATION TO DESIGN FORM
    Kobayashi, Yuki
    Katoh, Naoki
    Okano, Tomohiro
    Takizawa, Atsushi
    Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014): RETHINKING COMPREHENSIVE DESIGN: SPECULATIVE COUNTERCULTURE, 2014, : 493 - 502
  • [38] On Vertex, Edge, and Vertex-Edge Random Graphs
    Beer, Elizabeth
    Fill, James Allen
    Janson, Svante
    Scheinerman, Edward R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [39] An overview on vertex stabilizers in vertex-transitive graphs
    Spiga, Pablo
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2025, 18 (01): : 327 - 346
  • [40] Redundantly Rigid Topologies in Decentralized Multi-Agent Networks
    Williams, Ryan K.
    Gasparri, Andrea
    Soffietti, Matteo
    Sukhatme, Gaurav S.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 6101 - 6108